Abstract:
A composite liquid filtration platform including a composite filtration medium featuring an electrospun polymeric nanofiber layer collected on a porous membrane. When in use, the porous membrane acts as a prefilter used upstream from the polymeric nanofiber layer to remove particles from a liquid stream flowing through the composite filtration structure. The nanofiber layer, positioned downstream from the porous membrane, is used as the retentive layer for critical filtration to provide biosafety assurance, and is responsible for capturing microorganisms like bacteria, mycoplasma or viruses. The composite liquid filtration platform provided herein exhibits permeability advantages over conventional porous membranes or nanofiber mats spun on coarse non-wovens.
Abstract:
The present invention is an integral multilayered composite membrane having at least one ultrafiltration layer made by cocasting or sequentially casting a plurality of polymer solutions onto a support to form a multilayered liquid sheet and immersing the sheet into a liquid coagulation bath to effect phase separation and form a multilayered composite membrane having at least one ultrafiltration layer.
Abstract:
A composite microporous membrane is provided having a microporous nonretentive substrate and a retentive microporous layer coated directly to the substrate in the absence of an intermediate support layer.
Abstract:
A composite liquid filtration platform including a composite filtration medium featuring an electrospun polymeric nanofiber layer collected on a porous membrane. When in use, the porous membrane acts as a prefilter used upstream from the polymeric nanofiber layer to remove particles from a liquid stream flowing through the composite filtration structure. The nanofiber layer, positioned downstream from the porous membrane, is used as the retentive layer for critical filtration to provide biosafety assurance, and is responsible for capturing microorganisms like bacteria, mycoplasma or viruses. The composite liquid filtration platform provided herein exhibits permeability advantages over conventional porous membranes or nanofiber mats spun on coarse non-wovens.
Abstract:
Porous polymeric structures are provided along with a method to make such structures comprising heat-induced phase separation of a polymeric solution exhibiting a lower critical solution temperature.
Abstract:
The present invention is an integral multilayered composite membrane having at least one ultrafiltration layer made by cocasting or sequentially casting a plurality of polymer solutions onto a support to form a multilayered liquid sheet and immersing the sheet into a liquid coagulation bath to effect phase separation and form a multilayered composite membrane having at least one ultrafiltration layer.
Abstract:
This invention provides for a method to control the pore size or bubble point of porous membranes made by phase inversion in a continuous manufacturing process by blending two or more solutions each capable of producing a porous membrane with different pore size or bubble point than the pore size or bubble point of the desired membrane, and blending these solutions by the method of this invention to produce the desired pore size or bubble point. This invention also provides for a method to monitor membrane pore size in a continuous process and adjust pore size during the continuous manufacturing process.
Abstract:
The present invention provides a high-resolution membrane-based method for removing a virus from a manufactured protein-containing solution, the method being particularly characterized by its capacity to be performed quickly (i.e., as measured by flux) and efficiently (i.e., as measured by log reduction value, LRV). Towards such results, the present invention employs a plurality (i.e., greater than 2) of interfacially-contiguous asymmetric ultrafiltration membranes, the foremost of which is oriented with its “tight side” facing downstream. The present invention also provides a filtration capsule, useful in the conduct of the method, comprising a pleated tube formed of three interfacially-contiguous asymmetric ultrafiltration membranes.
Abstract:
The present invention provides a high-resolution membrane-based method for removing a virus from a manufactured protein-containing solution, the method being particularly characterized by its capacity to be performed quickly (i.e., as measured by flux) and efficiently (i.e., as measured by log reduction value, LRV). Towards such results, the present invention employs a plurality (i.e., greater than 2) of interfacially-contiguous asymmetric ultrafiltration membranes, the foremost of which is oriented with its “tight side” facing downstream. The present invention also provides a filtration capsule, useful in the conduct of the method, comprising a pleated tube formed of three interfacially-contiguous asymmetric ultrafiltration membranes.
Abstract:
A method for removing microorganisms from liquid samples and a nanofiber containing liquid filtration medium that simultaneously exhibits high liquid permeability and high microorganism retention. Microorganisms such as bacteria, particularly B. Diminuta, are removed from a liquid by passing the liquid through a porous nanofiber containing filtration medium having a B. Diminuta LRV greater than about 9, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. Another method for removing microorganisms such as bacteria and Mycloplasma, includes passing the liquid through a porous nanofiber containing filtration medium having a microorganism LRV greater than about 8, and the nanofiber(s) has a diameter from about 10 nm to about 1,000 nm. The filtration medium can be in the form of a fibrous electro spun polymeric nanofiber liquid filtration medium mat.