Abstract:
A rotary valve adapted for use in utility scale fluidic systems improves over conventional valving schemes by affording reductions in weight, pressure drop, cost, and actuation time, as well as providing improvements in decompression performance, higher pressure capability, and longer operational life. One embodiment of a three way valve assembly utilizes electric actuation to adjust decompression in real time and facilitate port shaping. The valve assembly utilizes a pressure balanced rotor and seals to reduce actuation and bearing loads, as well as increase seal life.
Abstract:
Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. For example, systems, methods and devices for optimizing the heat transfer within an air compression and expansion energy storage system are described herein. A compressor and/or expander device can include one or more of various embodiments of a heat transfer element that can be disposed within an interior of a cylinder or pressure vessel used in the compression and/or expansion of a gas, such as air. Such devices can include hydraulic and/or pneumatic actuators to move a fluid (e.g., liquid or gas) within the cylinder or pressure vessel. The heat transfer element can be used to remove heat energy generated during a compression and/or expansion process.
Abstract:
Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. For example, systems, methods and devices for optimizing the heat transfer within an air compression and expansion energy storage system are described herein. A compressor and/or expander device can include one or more of various embodiments of a heat transfer element that can be disposed within an interior of a cylinder or pressure vessel used in the compression and/or expansion of a gas, such as air. Such devices can include hydraulic and/or pneumatic actuators to move a fluid (e.g., liquid or gas) within the cylinder or pressure vessel. The heat transfer element can be used to remove heat energy generated during a compression and/or expansion process.
Abstract:
Systems, methods and devices for optimizing thermal efficiency within a gas compression system are described herein. In some embodiments, a device can include a first hydraulic cylinder, a second hydraulic cylinder, and a hydraulic actuator. The first hydraulic cylinder has a first working piston disposed therein for reciprocating movement in the first hydraulic cylinder and which divides the first hydraulic cylinder into a first hydraulic chamber and a second hydraulic chamber. The second hydraulic cylinder has a second working piston disposed therein for reciprocating movement in the second hydraulic cylinder and which divides the second hydraulic cylinder into a third hydraulic chamber and a fourth hydraulic chamber. The hydraulic actuator can be coupled to the first or second working piston, and is operable to move the first and second working pistons in a first direction and a second direction such that volume in the hydraulic chambers are reduced accordingly.
Abstract:
Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. In some embodiments, a compressed air device and/or system can include an actuator such as a hydraulic actuator that can be used to compress a gas within a pressure vessel. An actuator can be actuated to move a liquid into a pressure vessel such that the liquid compresses gas within the pressure vessel. In such a compressor/expander device or system, during the compression and/or expansion process, heat can be transferred to the liquid used to compress the air. The compressor/expander device or system can include a liquid purge system that can be used to remove at least a portion of the liquid to which the heat energy has been transferred such that the liquid can be cooled and then recycled within the system.
Abstract:
A rotary valve adapted for use in utility scale fluidic systems improves over conventional valving schemes by affording reductions in weight, pressure drop, cost, and actuation time, as well as providing improvements in decompression performance, higher pressure capability, and longer operational life. One embodiment of a three way valve assembly utilizes electric actuation to adjust decompression in real time and facilitate port shaping. The valve assembly utilizes a pressure balanced rotor and seals to reduce actuation and bearing loads, as well as increase seal life.
Abstract:
Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. In some embodiments, a compressed air device and/or system can include an actuator such as a hydraulic actuator that can be used to compress a gas within a pressure vessel. An actuator can be actuated to move a liquid into a pressure vessel such that the liquid compresses gas within the pressure vessel. In such a compressor/expander device or system, during the compression and/or expansion process, heat can be transferred to the liquid used to compress the air. The compressor/expander device or system can include a liquid purge system that can be used to remove at least a portion of the liquid to which the heat energy has been transferred such that the liquid can be cooled and then recycled within the system.
Abstract:
An apparatus can include a piston movably disposed within a pressure vessel and defines a first interior region and a second interior region. The piston has a first position in which the first interior contains a gas having a first pressure and has a volume greater than the second interior region, and a second position in which the second interior region contains a gas having a second pressure and has a volume greater than the first interior region. A seal member is attached to the piston and to the pressure vessel. The seal member has a first configuration in which at least a portion of the seal member is disposed at a first position when the piston is in its first position, and a second configuration in which the portion of the seal member is disposed at a second position when the piston is in its second position.
Abstract:
Systems, methods and devices for optimizing bi-directional piston movement within a device or system used to compress and/or expand a gas, such as air, are described herein. In some embodiments, a compressed air device and/or system can include a first pneumatic cylinder, a second pneumatic cylinder, a hydraulic actuator, and a hydraulic controller. The first pneumatic cylinder has a first working piston disposed therein for reciprocating movement in the first pneumatic cylinder and the hydraulic actuator is coupled to the first working piston. The second pneumatic cylinder has a second working piston disposed therein for reciprocating movement in the second pneumatic cylinder. The hydraulic controller is fluidically coupleable to the hydraulic actuator and is operable in a compression mode and an expansion mode.