Abstract:
The method of fabricating alumina-doped silica fibers allows the production of silica and dopant with reactions between gaseous chemical compounds. Alumina is obtained from a reaction between oxygen and a low-temperature vaporizable organometallic compound. The optical fibers produced do not present the refraction-index dip and exhibit low attenuation.
Abstract:
The process allows a uniform layer of glass particles, forming the preform, to be deposited on the internal wall of a supporting tube rotated around its axis. A suitable relationship is provided to determine the temperature distribution in the deposition zone. The apparatus makes use of different types of heat sources for generating inside the tube a temperature with the distribution required by the process.
Abstract:
A method for controlling attenuation losses caused by microbending on the signal transmitted by an optical fiber having an internal glass portion. A first coating layer of a first polymeric material surrounds the glass portion and a second coating layer of a second polymeric material surrounds the first coating layer. The first polymeric material has a hardening temperature lower than 10° and an equilibrium modulus lower than 1.5 MPa.
Abstract:
The method uses a raw-material and dopant-deposition technique, which requires vapor-state reactants and thermal sources for producing a temperature gradient suited to obtain a circularly and radially varying refractive-index profile in the supporting tube.
Abstract:
An optical fiber having: a) a glass portion; and b) at least one protective coating layer disposed to surround the glass portion, the protective coating layer having a modulus of elasticity value between −40° C. and +60° C. between 5 MPa and 600 MPa, preferably not higher than 500 MPa, more preferably not higher than 450 MPa and much more preferably not higher than 300. Preferably the protective coating layer is a single protective coating layer which is disposed in contact with the glass portion.
Abstract:
The method allows the production of silica and dopant with reactions among gaseous chemical compounds. The optical fibers produced do not present dip and exhibit low attenuation. Carbon dioxide is used as the oxidizer and organometallic aluminum compounds are used to obtain the dopant; silica is obtained from organometallic silicon compounds or silicon tetrachloride.
Abstract:
The process of manufacturing optical fibers of extremely low loss in the medium infrared permits the fabrication of glass preforms having as basic materials metal-fluorides obtained from vapor-phase reactants.
Abstract:
The apparatus allows the continuous production of optical fibres (15) starting from liquid-phase reactants. They are injected into a pressurized vertical vessel (3), comprising a second coaxial vessel (4), which can be vertically displaced for the variations of the refractive-index profile. The first vessel supplies material for the cladding, the second for the fibre core.Suitable furnaces (6,9,14) help the reaction and allow preform sintering and drawing.
Abstract:
A method and device for vaporizing a liquid reactant. A vaporizing plate having a top surface defines a liquid flow channel, the channel being laterally delimited by edges having a height greater than a minimum thickness of liquid reactant required to generate vapor under film or nucleate boiling regime. A heating system is associated to the vaporizing plate for heating the liquid reactant over a minimum temperature required to generate vapor under nucleate or, preferably, film boiling regime. A cap covers the vaporizing plate to collect the vapor at a predetermined pressure and provided with a vapor exit and a liquid feeder feeds the liquid reactant onto the vaporizing plate.
Abstract:
A network for distributing signals to a plurality of user having a distribution unit and a plurality of optical cables adapted to make the distribution unit communicate with the plurality of user equipment. In turn, each optical cable has an optical fibre having a core, a cladding and a predetermined simple refractive index profile Δn(r). Each optical fibre is adapted to guarantee a single-mode propagation at higher wavelengths than about 1260 nm and a few-mode propagation at about 850 nm, and each optical fibre has such refractive index profile Δn(r) as to guarantee macro-bending losses at 1550 nm that are less than about 0.5 dB and an intermodal delay Δτ at 850 nm that is less than or equal to, about 1 ns/Km.