Abstract:
A system and computer implemented method for detecting the location of a mobile device using semantic indicators is provided. The method includes receiving, using one or more processors, a plurality of images captured by a mobile device at an area. The area is associated with a set of candidate locations. Using the one or more processors, one or more feature indicators associated with the plurality of images are detected. These feature indicators include semantic features related to the area. The semantic features are compared with a plurality of stored location features for the set of candidate locations. In accordance with the comparison, a location from the set of candidate locations is selected to identify an estimated position of the mobile device.
Abstract:
A system and computer implemented method for detecting the location of a mobile device using semantic indicators is provided. The method includes receiving, using one or more processors, a plurality of images captured by a mobile device at an area. The area is associated with a set of candidate locations. Using the one or more processors, one or more feature indicators associated with the plurality of images are detected. These feature indicators include semantic features related to the area. The semantic features are compared with a plurality of stored location features for the set of candidate locations. In accordance with the comparison, a location from the set of candidate locations is selected to identify an estimated position of the mobile device.
Abstract:
A system and computer implemented method for detecting the location of a mobile device using semantic indicators is provided. The method includes receiving, using one or more processors, a plurality of images captured by a mobile device at an area. The area is associated with a set of candidate locations. Using the one or more processors, one or more feature indicators associated with the plurality of images are detected. These feature indicators include semantic features related to the area. The semantic features are compared with a plurality of stored location features for the set of candidate locations. In accordance with the comparison, a location from the set of candidate locations is selected to identify an estimated position of the mobile device.
Abstract:
A system and computer implemented method for detecting the location of a mobile device using semantic indicators is provided. The method includes receiving, using one or more processors, a plurality of images captured by a mobile device at an area. The area is associated with a set of candidate locations. Using the one or more processors, one or more feature indicators associated with the plurality of images are detected. These feature indicators include semantic features related to the area. The semantic features are compared with a plurality of stored location features for the set of candidate locations. In accordance with the comparison, a location from the set of candidate locations is selected to identify an estimated position of the mobile device.
Abstract:
According to various aspects of the subject technology, a user's personality profile is based on a user's social actions, including uploading a photo in association with a post (e.g. check-in, comment, reshare, etc.). The post's content (e.g. photo) is attributed to one or more personality dimensions in the user's personality profile. The various personality dimensions are then displayed in a compass graph, which shows user achievement on a multi-dimensional scale. Each discreet, explicit submission alters, to some degree, one or more dimensions. The compass graph is publicly viewable, and users can see the profile change over time, as each user action updates the compass graph. The dimensions can also be altered by the number of posts, time, locations of posts, subject matter (e.g. types of posts or categories of posts), and external interaction such as social interactions (e.g. feedback on posts, or positive comments).