Abstract:
A position fix identifying a geographic location of a receiver is received. The position fix was generated using signals received at the receiver from respective high-altitude signal sources (such as satellites). Imagery of a geographic area that includes the geographic location is also received. The imagery is automatically processed to determine whether one or more of the high-altitude signal sources were occluded from the geographic location when the position fix was generated. In response to determining that one or more of the high-altitude signal sources were occluded from the geographic location when the position fix was generated, the position fix is identified as being potentially erroneous.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating tasks from user observations. One of the methods includes segmenting a plurality of observations associated with a user of a user device into a plurality of tasks previously engaged in by the user; and generating a respective task presentation for each of the plurality of tasks for presentation to the user.
Abstract:
Systems and methods for identifying prominent landmarks in a geographic area are provided. More particularly, geographic imagery data, such as panoramic images captured by a camera from a perspective at or near ground level, can be analyzed to identify landmarks depicted in the geographic imagery data. For instance, structure-from-motion techniques can be used to generate a point cloud of tracked features that are located a threshold distance away from one or more camera perspectives associated with the geographic imagery data. Landmarks that are visible from multiple camera perspectives and that are visible from greater distances relative to one or more camera perspectives can be identified as prominent landmarks in a geographic area. A geographic information system can use the prominent landmarks for a variety of purposes, such as for use in providing travel directions, for rendering landmarks in an emphasized style, and/or for constructing/displaying a three-dimensional model of the landmark.
Abstract:
A position fix identifying a geographic location of a receiver is received. The position fix was generated using signals received at the receiver from respective high-altitude signal sources (such as satellites). Imagery of a geographic area that includes the geographic location is also received. The imagery is automatically processed to determine whether one or more of the high-altitude signal sources were occluded from the geographic location when the position fix was generated. In response to determining that one or more of the high-altitude signal sources were occluded from the geographic location when the position fix was generated, the position fix is identified as being potentially erroneous.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating tasks from user observations. One of the methods includes segmenting a plurality of observations associated with a user of a user device into a plurality of tasks previously engaged in by the user; and generating a respective task presentation for each of the plurality of tasks for presentation to the user.
Abstract:
Systems and methods for identifying prominent landmarks in a geographic area are provided. More particularly, geographic imagery data, such as panoramic images captured by a camera from a perspective at or near ground level, can be analyzed to identify landmarks depicted in the geographic imagery data. For instance, structure-from-motion techniques can be used to generate a point cloud of tracked features that are located a threshold distance away from one or more camera perspectives associated with the geographic imagery data. Landmarks that are visible from multiple camera perspectives and that are visible from greater distances relative to one or more camera perspectives can be identified as prominent landmarks in a geographic area. A geographic information system can use the prominent landmarks for a variety of purposes, such as for use in providing travel directions, for rendering landmarks in an emphasized style, and/or for constructing/displaying a three-dimensional model of the landmark.
Abstract:
Systems and methods for identifying prominent landmarks in a geographic area are provided. More particularly, geographic imagery data, such as panoramic images captured by a camera from a perspective at or near ground level, can be analyzed to identify landmarks depicted in the geographic imagery data. For instance, structure-from-motion techniques can be used to generate a point cloud of tracked features that are located a threshold distance away from one or more camera perspectives associated with the geographic imagery data. Landmarks that are visible from multiple camera perspectives and that are visible from greater distances relative to one or more camera perspectives can be identified as prominent landmarks in a geographic area. A geographic information system can use the prominent landmarks for a variety of purposes, such as for use in providing travel directions, for rendering landmarks in an emphasized style, and/or for constructing/displaying a three-dimensional model of the landmark.