Systems and methods for achieving high network link utilization

    公开(公告)号:US09608917B1

    公开(公告)日:2017-03-28

    申请号:US14058749

    申请日:2013-10-21

    Applicant: Google Inc.

    CPC classification number: H04L47/2441 H04L47/10 H04L47/24 H04L47/72

    Abstract: Systems and methods for achieving high utilization of a network link are provided. A first communication protocol can be selected for transmitting network flows of a first type. A first quality of service can be assigned to network flows of the first type. A second communication protocol can be selected for transmitting network flows of a second type. A second quality of service, lower than the first quality of service, can be assigned to network flows of the second type. A first percentage of available bandwidth can be allocated to the network flows of both the first and second types. The remaining bandwidth, plus a second percentage of available bandwidth, can be allocated to the network flows of the second type, such that the total allocated bandwidth exceeds the available bandwidth of the network link.

    Content recommendation system using a neural network language model
    3.
    发明授权
    Content recommendation system using a neural network language model 有权
    内容推荐系统采用神经网络语言模型

    公开(公告)号:US09535897B2

    公开(公告)日:2017-01-03

    申请号:US14136111

    申请日:2013-12-20

    Applicant: Google Inc.

    Abstract: The present disclosure relates to applying techniques similar to those used in neural network language modeling systems to a content recommendation system. For example, by associating consumed media content to words of a language model, the system may provide content predictions based on an ordering. Thus, the systems and techniques described herein may produce enhanced prediction results for recommending content (e.g. word) in a given sequence of consumed content. In addition, the system may account for additional user actions by representing particular actions as punctuation in the language model.

    Abstract translation: 本公开涉及将类似于神经网络语言建模系统中使用的技术应用于内容推荐系统。 例如,通过将消耗的媒体内容与语言模型的单词相关联,系统可以基于排序来提供内容预测。 因此,本文描述的系统和技术可以产生用于在给定的消费内容序列中推荐内容(例如,单词)的增强的预测结果。 此外,系统可以通过将特定动作表示为语言模型中的标点符号来解释额外的用户操作。

    Content Recommendation System using a Neural Network Language Model
    5.
    发明申请
    Content Recommendation System using a Neural Network Language Model 有权
    使用神经网络语言模型的内容推荐系统

    公开(公告)号:US20150178265A1

    公开(公告)日:2015-06-25

    申请号:US14136111

    申请日:2013-12-20

    Applicant: Google Inc.

    Abstract: The present disclosure relates to applying techniques similar to those used in neural network language modeling systems to a content recommendation system. For example, by associating consumed media content to words of a language model, the system may provide content predictions based on an ordering. Thus, the systems and techniques described herein may produce enhanced prediction results for recommending content (e.g. word) in a given sequence of consumed content. In addition, the system may account for additional user actions by representing particular actions as punctuation in the language model.

    Abstract translation: 本公开涉及将类似于神经网络语言建模系统中使用的技术应用于内容推荐系统。 例如,通过将消耗的媒体内容与语言模型的单词相关联,系统可以基于排序来提供内容预测。 因此,本文描述的系统和技术可以产生用于在给定的消费内容序列中推荐内容(例如,单词)的增强的预测结果。 此外,系统可以通过将特定动作表示为语言模型中的标点符号来解释额外的用户操作。

Patent Agency Ranking