TEMPLATE-BASED STRUCTURED DOCUMENT CLASSIFICATION AND EXTRACTION

    公开(公告)号:US20180144042A1

    公开(公告)日:2018-05-24

    申请号:US15360939

    申请日:2016-11-23

    Applicant: Google Inc.

    Abstract: Techniques are described herein for automatically generating data extraction templates for structured documents (e.g., B2C emails, invoices, bills, invitations, etc.), and for assigning classifications to those data extraction templates to streamline data extraction from subsequent structured documents. In various implementations, a data extraction template generated from a cluster of structured documents that share fixed content may be identified. Features of the cluster of structured documents may be applied as input to extraction machine learning model(s) trained to provide location(s) of transient field(s) in structured documents, to determine location(s) of transient field(s) in the cluster of structured documents. An association between the data extraction template and the determined transient field location(s) may be stored. Based on the association, data point(s) may be extracted from a given structured document of a user that shares fixed content with the cluster of structured documents. The extracted data point(s) may be surfaced to the user.

    Template-based structured document classification and extraction

    公开(公告)号:US10657158B2

    公开(公告)日:2020-05-19

    申请号:US15360939

    申请日:2016-11-23

    Applicant: Google Inc.

    Abstract: Techniques are described herein for automatically generating data extraction templates for structured documents (e.g., B2C emails, invoices, bills, invitations, etc.), and for assigning classifications to those data extraction templates to streamline data extraction from subsequent structured documents. In various implementations, a data extraction template generated from a cluster of structured documents that share fixed content may be identified. Features of the cluster of structured documents may be applied as input to extraction machine learning model(s) trained to provide location(s) of transient field(s) in structured documents, to determine location(s) of transient field(s) in the cluster of structured documents. An association between the data extraction template and the determined transient field location(s) may be stored. Based on the association, data point(s) may be extracted from a given structured document of a user that shares fixed content with the cluster of structured documents. The extracted data point(s) may be surfaced to the user.

    Template-based identification of user interest

    公开(公告)号:US10387559B1

    公开(公告)日:2019-08-20

    申请号:US15359101

    申请日:2016-11-22

    Applicant: Google Inc.

    Abstract: Methods and apparatus are described herein for creating associations between user interests and electronic document templates generated from B2C electronic documents. Once these associations are created, interest(s) of a user (e.g., a user profile) may be determined automatically based on B2C electronic documents addressed to the user. In various implementations, an electronic document addressed to a user may be identified. A particular electronic document template that corresponds to the electronic document addressed to the user may be selected from a plurality of electronic document templates. The selecting may be based on attribute(s) shared between the electronic document addressed to the user and the selected electronic document template. The particular electronic template may be generated from a plurality of electronic documents that share fixed content. Interest(s) associated with the particular electronic document template may be identified, and association(s) between the user and the identified interest(s) may be stored.

Patent Agency Ranking