Abstract:
Systems and techniques are provided for aggregation of asynchronous trust outcomes in a mobile device. Trust levels may be determined from the signals. Each trust level may be determined independently of any other trust level. Each trust level may be determined based on applying to the signals heuristics, mathematical optimization, decisions trees, machine learning systems, or artificial intelligence systems. An aggregated trust outcome may be determined by aggregating the trust levels. Aggregating the trust levels may include applying heuristics, mathematical optimization, decisions trees, machine learning systems, or artificial intelligence systems to the trust levels, and wherein the aggregated trust outcome; and sending the aggregated trust outcome to be implemented by the enabling, disabling, or relaxing of at least one security measure based on the aggregated trust outcome.
Abstract:
A method of generating a moving thumbnail is disclosed. The method includes sampling video frames of a video item. The method further includes determining frame-level quality scores for the sampled video frames. The method also includes determining multiple group-level quality scores for multiple groups of the sampled video frames using the frame-level quality scores of the sampled video frames. The method further includes selecting one of the groups of the sampled video frames based on the multiple group-level quality scores. The method includes creating a moving thumbnail using a subset of the video frames that have timestamps within a range from the start timestamp to the end timestamp.
Abstract:
A method of generating a moving thumbnail is disclosed. The method includes sampling video frames of a video item. The method further includes determining frame-level quality scores for the sampled video frames. The method also includes determining multiple group-level quality scores for multiple groups of the sampled video frames using the frame-level quality scores of the sampled video frames. The method further includes selecting one of the groups of the sampled video frames based on the multiple group-level quality scores. The method includes creating a moving thumbnail using a subset of the video frames that have timestamps within a range from the start timestamp to the end timestamp.