RELATIVE MARGIN FOR CONTRASTIVE LEARNING

    公开(公告)号:US20250111235A1

    公开(公告)日:2025-04-03

    申请号:US18900506

    申请日:2024-09-27

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training neural networks through contrastive learning. In particular, the contrastive learning is modified to use a relative margin to adjust a training pair's contribution to optimization.

    Multi-dialect and multilingual speech recognition

    公开(公告)号:US12254865B2

    公开(公告)日:2025-03-18

    申请号:US18418246

    申请日:2024-01-20

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer-readable media, for speech recognition using multi-dialect and multilingual models. In some implementations, audio data indicating audio characteristics of an utterance is received. Input features determined based on the audio data are provided to a speech recognition model that has been trained to output score indicating the likelihood of linguistic units for each of multiple different language or dialects. The speech recognition model can be one that has been trained using cluster adaptive training. Output that the speech recognition model generated in response to receiving the input features determined based on the audio data is received. A transcription of the utterance generated based on the output of the speech recognition model is provided.

Patent Agency Ranking