Abstract:
The present invention relates to an electron tube comprising, at least, a cathode electrode and a face plate having a photocathode which are arranged at one end of a body, and a stem arranged at the other end of the body for defining the position of an electron entrance surface where the electron emitted from the photocathode reaches. The object of the present invention is to provide an electron tube which can reduce its size and has a structure for improving the workability in its assembling process. In particular, the electron tube in accordance with the present invention comprises a bonding ring, provided between the face plate and the cathode electrode, for bonding the face plate and the cathode electrode together. The bonding ring is made of a metal material selected from the group consisting of In, Au, Pb, alloys containing In, and alloys containing Pb.
Abstract:
This invention relates to an electron tube which stabilizes the orbits of electrons accelerated and focused by an electron lens and has a structure for effectively suppressing noise generated due to discharge. This electron tube has, at two ends of an insulating container, a cathode electrode (3) and an anode electrode (6) which constitute the electron lens. Particularly, in the electron tube, one end of the cathode electrode (3) and a photocathode (16) are supported by a conductive member (2,4) arranged at one end of the insulating container (5), and the cathode electrode is electrically connected to the photocathode. The cathode electrode (3) partially extends to a stem (10) along the inner wall (502) of the insulating container (5) and is tapered toward the stem so that the distal end portion of the cathode electrode is separated from the inner wall of the insulating container. Therefore, the electron tube realizes, regardless of the size of the insulating container, a structure for preventing the insulating container from being charged and suppressing discharge followed by light emission between the cathode electrode and the insulating container.
Abstract:
The present invention relates to an electron tube comprising, at least, a cathode electrode and a face plate having a photocathode which are arranged at one end of a body, and a stem arranged at the other end of the body for defining the position of an electron entrance surface where the electron emitted from the photocathode reaches. The object of the present invention is to provide an electron tube which can reduce its size and has a structure for improving the workability in its assembling process. In particular, the electron tube in accordance with the present invention comprises a bonding ring, provided between the face plate and the cathode electrode, for bonding the face plate and the cathode electrode together. The bonding ring is made of a metal material selected from the group consisting of In, Au, Pb, alloys containing In, and alloys containing Pb.
Abstract:
An optical measurement apparatus 10 primarily includes: a photon detection unit 12 for detecting incident photons, a time signal output unit 14 for outputting a time signal, and a storage unit 16 for storing the time signal outputted from the time signal output unit 14 when the photon detection unit 12 detects photons. The photon detection unit 12 includes a HPD 24 having a photocathode 24a and an APD 24b, a TZ amplifier 26, a peak holding circuit 28, and an A/D converter 30. The time signal output unit 14 includes a timer 32 and a counter 34. The storage unit 16 includes a comparator 36 and a memory 38. When photons impinge on the HPD 24, a trigger signal is outputted from the comparator 36, causing the photon-number outputted from the A/D converter 30 and the time data outputted from the counter 34 to be stored in the memory 38.
Abstract:
This invention relates to an electron tube which stabilizes the orbits of electrons accelerated and focused by an electron lens and has a structure for effectively suppressing noise generated due to discharge. This electron tube has, at two ends of an insulating container, a cathode electrode (3) and an anode electrode (6) which constitute the electron lens. Particularly, in the electron tube, one end of the cathode electrode (3) and a photocathode (16) are supported by a conductive member (2,4) arranged at one end of the insulating container (5), and the cathode electrode is electrically connected to the photocathode. The cathode electrode (3) partially extends to a stem (10) along the inner wall (502) of the insulating container (5) and is tapered toward the stem so that the distal end portion of the cathode electrode is separated from the inner wall of the insulating container. Therefore, the electron tube realizes, regardless of the size of the insulating container, a structure for preventing the insulating container from being charged and suppressing discharge followed by light emission between the cathode electrode and the insulating container.
Abstract:
An enclosure (2) has a glass bulb body (4) and a tubular glass bulb base (5). The glass bulb body (4) is composed of a generally spherical upper semispherical portion (4a) and a generally spherical lower semispherical portion (4b). The lower semispherical portion (4a) is connected between the upper semispherical portion (4a) and the glass bulb base (5). On the inner wall of the glass bulb body (4), a photoelectric surface (11) is formed. An avalanche photodiode (APD) (15) is disposed in the glass bulb base (5) in a position nearer to the glass bulb body (4) than the intersection (S) of the imaginary extension curve (I) of the lower semispherical portion (4b) and the axis (Z). When light enters the photoelectric surface (11), the photoelectric surface (11) emits electrons. The electrons are converged near and above the surface of the (APD) (15) by the electric field inside the electron tube (1). Therefore the electrons enter the APD (15) efficiently and are detected.
Abstract:
An insulating tube (9) has one end and the other end. An avalanche photodiode (APD) (15) is disposed outside the one end of the insulating tube (9). The other end of the insulating tube (9) is hermetically connected to an outside flange through a stem inner wall (61). Capacitors (C1, C2) electrically connected to the APD (15) are provided inside the insulating tube (9) and serve to remove the DC current from the signal generated by the APD (15) when it detects electrons. Since the capacitors (C1, C2) are provided inside the insulating tube (9), the response of the output signal is prevented from degrading.