Abstract:
An antenna device includes a dual polarized quad-ridge antenna horn an electrically conductive conduit with first and second opposite ends along a horn axis. Four electrically conductive ridges are carried on an inner side of the electrically conductive conduit. A printed wiring board including a dielectric substrate is connected across the first end of the dual polarized quad-ridge antenna horn and transversely to the horn axis. Furthermore, an electrically conductive pattern is formed on the dielectric substrate and defines feed elements for the dual polarized quad-ridge antenna horn.
Abstract:
An antenna device includes a dual polarized quad-ridge antenna horn an electrically conductive conduit with first and second opposite ends along a horn axis. Four electrically conductive ridges are carried on an inner side of the electrically conductive conduit. A printed wiring board including a dielectric substrate is connected across the first end of the dual polarized quad-ridge antenna horn and transversely to the horn axis. Furthermore, an electrically conductive pattern is formed on the dielectric substrate and defines feed elements for the dual polarized quad-ridge antenna horn.
Abstract:
A phased array antenna includes an antenna housing having a subarray assembly that supports beam forming network modules and an array face defining a ground plane substantially orthogonal to the subarray assembly. A plurality of millimeter wavelength patch antenna elements are positioned on the array face and each positioned adjacent a respective subarray assembly. The millimeter wavelength patch antenna elements each include a driven antenna element having a front and rear side and a parasitic antenna element positioned forward of the front side of the driven antenna element. A microstrip quadrature-to-circular polarization circuit is positioned rearward of the rear side of the driven antenna element and operatively connected to the driven antenna element.
Abstract:
A phased array antenna includes an antenna housing having an array face defining an electrically conductive ground layer. A plurality of millimeter wavelength patch antenna elements are positioned on the array face and each include a primary substrate having front and rear sides and a driven antenna element positioned on the front side of the primary substrate. A ground plane layer is positioned on the rear side of the primary substrate and a dielectric layer is positioned on the ground plane layer. A microstrip quadrature-to-circular polarization circuit is positioned on the dielectric layer. A parasitic antenna element layer is spaced forward from the driven antenna element and at least one spacer is positioned between the parasitic antenna element layer and the primary substrate.
Abstract:
A phased array antenna includes an antenna housing having an array face defining an electrically conductive ground layer. A plurality of millimeter wavelength patch antenna elements are positioned on the array face and each include a primary substrate having front and rear sides and a driven antenna element positioned on the front side of the primary substrate. A ground plane layer is positioned on the rear side of the primary substrate and a dielectric layer is positioned on the ground plane layer. A microstrip quadrature-to-circular polarization circuit is positioned on the dielectric layer. A parasitic antenna element layer is spaced forward from the driven antenna element and at least one spacer is positioned between the parasitic antenna element layer and the primary substrate.
Abstract:
A phased array antenna includes an antenna housing having an array face defining an electrically conductive ground plane layer. A plurality of millimeter wavelength patch antenna elements are positioned on the array face and each include a primary substrate having front and rear sides and a driven antenna element positioned on the front side of the primary substrate. A ground plane layer is positioned on the rear side of the primary substrate and a dielectric layer is positioned on the ground plane layer. A microstrip quadrature-to-circular polarization circuit is positioned on the dielectric layer. A parasitic antenna element layer is spaced forward from the driven antenna element and at least one spacer is positioned between the parasitic antenna element layer and the primary substrate. This spacer is dimensioned for enhanced parasitic antenna element performance at millimeter wavelength radio frequency signals.
Abstract:
A phased array antenna includes an antenna housing having a subarray assembly that supports beam forming network modules and an array face defining a ground plane substantially orthogonal to the subarray assembly. A plurality of millimeter wavelength patch antenna elements are positioned on the array face and each positioned adjacent a respective subarray assembly. The millimeter wavelength patch antenna elements each include a driven antenna element having a front and rear side and a parasitic antenna element positioned forward of the front side of the driven antenna element. A microstrip quadrature-to-circular polarization circuit is positioned rearward of the rear side of the driven antenna element and operatively connected to the driven antenna element. A single millimeter wavelength feed operatively connects the microstrip quadrature-to-circular polarization circuit with a respective adjacent beam forming network module supported on the orthogonal positioned subarray assembly.
Abstract:
A phased array antenna includes an antenna housing having an array face defining an electrically conductive ground plane layer. A plurality of millimeter wavelength patch antenna elements are positioned on the array face and each include a primary substrate having front and rear sides and a driven antenna element positioned on the front side of the primary substrate. A ground plane layer is positioned on the rear side of the primary substrate and a dielectric layer is positioned on the ground plane layer. A microstrip quadrature-to-circular polarization circuit is positioned on the dielectric layer. A parasitic antenna element layer is spaced forward from the driven antenna element and at least one spacer is positioned between the parasitic antenna element layer and the primary substrate. This spacer is dimensioned for enhanced parasitic antenna element performance at millimeter wavelength radio frequency signals.
Abstract:
A phased array antenna includes an antenna housing having a subarray assembly that supports beam forming network modules and an array face defining a ground plane substantially orthogonal to the subarray assembly. A plurality of millimeter wavelength patch antenna elements are positioned on the array face and each positioned adjacent a respective subarray assembly. The millimeter wavelength patch antenna elements each include a driven antenna element having a front and rear side and a parasitic antenna element positioned forward of the front side of the driven antenna element. A microstrip quadrature-to-circular polarization circuit is positioned rearward of the rear side of the driven antenna element and operatively connected to the driven antenna element. A single millimeter wavelength feed operatively connects the microstrip quadrature-to-circular polarization circuit with a respective adjacent beam forming network module supported on the orthogonal positioned subarray assembly.
Abstract:
A phased array antenna includes an antenna housing having a subarray assembly that supports beam forming network modules and an array face defining a ground plane substantially orthogonal to the subarray assembly. A plurality of millimeter wavelength patch antenna elements are positioned on the array face and each positioned adjacent a respective subarray assembly. The millimeter wavelength patch antenna elements each include a driven antenna element having a front and rear side and a parasitic antenna element positioned forward of the front side of the driven antenna element. A microstrip quadrature-to-circular polarization circuit is positioned rearward of the rear side of the driven antenna element and operatively connected to the driven antenna element. A single millimeter wavelength feed operatively connects the microstrip quadrature-to-circular polarization circuit with a respective adjacent beam forming network module supported on the orthogonal positioned subarray assembly.