Abstract:
A 3D printing system includes a build material and an ink for patterning portions of the build material. The printing system further includes two or more susceptors, a first susceptor and a second susceptor. The first susceptor causes heating when exposed to microwave radiation at a first temperature. The second susceptor causes heating when exposed to microwave radiation at a second temperature. The first susceptor material is decomposable or oxidizable at a third temperature that is higher than the second temperature. The second susceptor is transparent to microwave radiation at the first temperature.
Abstract:
In one example, a non-transitory processor readable medium with instructions thereon that when executed cause an additive manufacturing machine to consolidate powdered build material in a volume of a substrate of powdered build material to form a consolidated volume of substrate.
Abstract:
A wear resistant coating may comprise an amorphous metal comprising at least one refractory metal, at least two elements selected from periods 4, 5, 6, 9, and 10, and a metalloid. An amorphous metal may comprise at least one refractory metal, at least two elements selected from periods 4, 5, 6, 9, and 10, and a metalloid. A coating may comprise at least one refractory metal, at least two elements selected from periods 4, 5, 6, 9, and 10, and silicon. In some examples, the amorphous metal is TaWSi. In one example, the refractory metals may comprise Niobium, Molybdenum, Tantalum, Tungsten, Rhenium, or combinations thereof.
Abstract:
The present disclosure is drawn to a thermal inkjet printhead stack with an amorphous metal resistor, including an insulated substrate and a resistor applied to the insulated substrate. The resistor can include from 5 atomic % to 90 atomic % of a metalloid of carbon, silicon, or boron; and from 5 atomic % to 90 atomic % each of a first and second metal of titanium, vanadium, chromium, cobalt, nickel, zirconium, niobium, molybdenum, rhodium, palladium, hafnium, tantalum, tungsten, iridium, or platinum, where the second metal is different than the first metal. The metalloid, the first metal, and the second metal can account for at least 70 atomic % of the amorphous thin metal film.