Abstract:
Fluid ejection devices and methods thereof are disclosed in the present disclosure. A method includes establishing fluid communication between an ejection chamber and a fluid supply chamber of the fluid ejection device such that the ejection chamber includes a nozzle and an ejection member to selectively eject fluid through the nozzle. The method also includes detecting at least one impedance in the fluid by a sensor unit having a sensor plate.
Abstract:
An inkjet printing system, fluid ejection system and method thereof are disclosed. The fluid ejection system includes a fluid ejection device and a determination module to determine a supply condition based on the count value output by the converter module. The fluid ejection device includes a fluid supply chamber to store fluid, an ejection chamber including a nozzle and a corresponding ejection member to selectively eject the fluid through the nozzle, a pressure sensor unit having a sensor plate to output a voltage value corresponding to a cross-sectional area of an amount of fluid in the ejection chamber. The fluid ejection system also includes a converter module to output a count value corresponding to the voltage value output by the pressure sensor unit.
Abstract:
A printhead apparatus, an inkjet printer system, and a method of built-in test employ a test flag transmitted through a data channel of a printhead. The apparatus includes a plurality of printheads, a data register at each printhead, and a status channel. Each printhead has a unidirectional data channel (UDC) to provide data to the printhead. The data register detects proper reception of a test flag received by the printhead through the UDC. The status channel reports printhead status information including whether or not proper reception of the test flag was detected by the data register. The system includes the apparatus and a controller to generate the test flag and receive the printhead status information. The method includes sending a test flag, and verifying proper reception thereof.
Abstract:
Fluid ejection systems and methods thereof are disclosed in the present disclosure. The method includes establishing fluid communication between an ejection chamber and a fluid supply chamber of the fluid ejection system such that the ejection chamber includes a nozzle and an ejection member to selectively eject the fluid through the nozzle. The method also includes detecting at feast one impedance in the fluid by a sensor unit haying a sensor plate, and identifying the characteristic of the fluid by a fluid identification module based on the at least one detected impedance value to obtain an identified fluid characteristic.
Abstract:
An example provides a fluid ejection device including a fluid feed slot, a fluid chamber between a nozzle layer and a passivation layer, and a printhead-integrated sensor to sense a property of a fluid in the fluid chamber. The sensor may include a ground electrode exposed to the fluid chamber through a via in the passivation layer.
Abstract:
In an embodiment, a fluid level sensor includes a sensor plate and a current source. The fluid level sensor also includes an algorithm to bias the current source such that current applied to the sensor plate induces a maximum difference in response voltage between a dry sensor plate condition and a wet sensor plate condition.