Abstract:
A diagnostic cassette includes a substrate, to physically and electrically connect the product to a computing device, a reservoir defined within the substrate to receive a fluid sample for processing by the diagnostic cassette, a reagent to react with the fluid sample deposited in the reservoir to form a solution to enable processing of the fluid sample by the diagnostic cassette, a channel to direct the solution, and a sensor to measure a number of parameters of the solution passing through the channel. A method for measuring microfluidic samples includes receiving, in a reservoir, a fluid sample to be measured, combining the fluid sample with a reagent to create a solution, moving the solution through a channel, and measuring the solution, using sensors, as the solution passes through the channel.
Abstract:
Vented microfluidic reservoirs can include a housing and a vent coupled to the housing to vent air associated with a fluid sample communicated into the housing to an environment surrounding a microfluidic device coupled to the housing.
Abstract:
A controller outputs control signals controlling a frequency source to selectively apply different nonzero frequencies of alternating current at different times to an electric sensor within a microfluidic channel.
Abstract:
A microfluidic sensing device comprises a channel and an impedance sensor within the channel. The impedance sensor comprises a local ground and an electrode within the channel. The local ground and the electrode are to form an electric field region that is elongated along the channel.
Abstract:
A microfluidic sensing device comprises a channel and an impedance sensor within the channel. The impedance sensor comprises a local ground and an electrode within the channel. The local ground and the electrode are to form an electric field region that is elongated along the channel.