Abstract:
The present invention relates to a composite material (10) comprising a layer of electrically conductive material (12) being provided on both sides with a lightweight fibrous veil (14), each veil (14) being coated on its surface remote from the electrically conductive material layer (12) with a curable thermosetting resin matrix material (16).
Abstract:
A composite material comprising at least one polymeric resin and optionally at least one fibrous reinforcement, where the polymeric resin comprises; at least one difunctional epoxy resin; and at least one epoxy resin with a functionality greater than two having at least one meta-substituted phenyl ring in its backbone.
Abstract:
This invention relates to a curative composition and its use in curing epoxy resins and prepregs, adhesives and moulded materials derived therefrom. The curative composition comprises a clathrate comprising a host component and a guest component, the host comprising a carboxylic acid or ester compounds as defined or phenolphthalin and the guest comprising an imidazole or imidazoline component.
Abstract:
A prepreg comprising a structural layer of packed unidirectional conductive fibres comprising thermosetting resin in the interstices, and a first outer layer of resin comprising thermosetting resin, and being essentially free of unidirectional conductive fibres, which when cured under elevated temperature, produces a cured composite material comprising a cured structural layer of packed unidirectional conductive fibres and a first outer layer of cured resin comprising unidirectional conductive fibres dispersed within.
Abstract:
A prepreg comprising a fibre reinforced curable resin, the prepreg containing electrically conductive particles in the range of from 0.5 to 10% by weight based on the resin, the electrically conductive particles comprising potato shaped graphite.
Abstract:
A process for the manufacture of a prepreg comprising feeding a layer of unidirectional conductive fibres having a defined width, bringing into contact with a first face of the fibres a first layer of resin comprising thermosetting resin, and compressing the resin and fibres together by passing over one or more impregnation rollers, wherein the pressure exerted onto the conductive fibres and resin does not exceed 40 kg per centimetre of the width of the conductive fibres, and the resin being in sufficient amount for the resin to enter the interstices of the fibres and leave a first outer layer of resin essentially free of unidirectional conductive fibres.
Abstract:
A prepreg comprising a fibre reinforced curable resin, the curable resin being composed of 25 to 35 weight percent tetrafunctional epoxy resin based on the total weight of the curable resin; 18 to 28 weight percent difunctional epoxy resin; 4 to 18 weight percent polyether sulfone; 2 to 10 weight percent polyamide 12 particles; 2 to 10 weight percent polyamide 11 particles; 1 to 8 weight percent potato shaped graphite particles; and 17.4 to 27.4 weight percent of a curing agent for said curable resin.
Abstract:
A composite structure (10) comprising one or more electrically conductive pathways (12) and one or more isolators for isolating the pathways (12) from the bulk of the structure (10).
Abstract:
A composite material assembly comprises a) a surface enhancing layer comprising at least one layer of fibres, having a length to width aspect ratio of more than 5:1 and b) a structural layer comprising at least one reinforcing fibre and at least one polymeric matrix.
Abstract:
A prepreg comprising a fibre reinforced curable resin, the prepreg containing electrically conductive particles in the range of from 0.5 to 10% by weight based on the resin, the electrically conductive particles comprising potato shaped graphite.