Abstract:
PROBLEM TO BE SOLVED: To minimize the risk of breakdown, even if the dimensions of the sample chamber and electrodes become further smaller. SOLUTION: The removable data storage device for a measuring instrument which uses a test strip to measure the concentration of an object to be analyzed in a liquid sample is configured, to include a carrier having a proximal and distal end, and including a circuit board. The circuit board has electrical contacts, including a ground contact and a voltage supply contact electrically connected to the measuring instrument at predetermined positions. The circuit board includes a nonvolatile memory storing data used by the measuring instrument. The data includes constants used by machine language instructions stored in the memory of the measuring instrument. When the removable data storage device is inserted into the measuring instrument in the preferred orientation, the ground contact becomes electrically connected to the measuring instrument before the voltage supply contact; and when the removable data storage device is removed from the measuring instrument, the ground contact becomes electrically disconnected from the measuring instrument after the voltage supply contact. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
Biological reagent compositions with improved sensitivity to the concentration of blood glucose in patient samples for use in measuring systems and methods. The reagent compositions comprise a glucose oxidoreductase enzyme, a flavin nucleoside coenzyme and a mediator formulation. The mediator formulation comprises at least one electroactive organic molecule and at least one coordination complex.
Abstract:
A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
Abstract:
A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber or other testing zone, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the testing zone. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
Abstract:
Disclosed herein are biosensors for measuring analyte concentration in a bodily fluid comprising at least one electrode comprising semiconducting, conducting, or thin film carbon material, and an electron mediator comprising a ruthenium containing electron mediator, or a ferricyanide material or ferrocene carboxylic acid. Methods of measuring analyte concentration in a bodily fluid using such biosensors are also disclosed.
Abstract:
A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
Abstract:
A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
Abstract:
A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.