Abstract:
An in-situ time domain spectroscopy (TDS)-based method (200) for non-contact characterization of properties of a sheet material while being produced by a manufacturing system (700). A time domain spectrometry system (100) and calibration data for the system (100) is provided. The calibration data includes data for transmitted power through or reflected power from the sheet material as a function of a moisture content of the sheet material. At least one pulse of THz or near THz radiation from a transmitter (111) is directed at a sample location on a sheet material sample (130) while being processed by the manufacturing system (700). Transmitted or reflected radiation associated with at least one transmitted or reflected pulse from the sample location is synchronously detected by a detector (110) to obtain the sample data. The sample data, which is coincident data, is processed together with the calibration data (207, 208, 209) to determine at least one, and generally a plurality of properties of the sheet material sample (130) selected from caliper, basis weight and moisture content.
Abstract:
An apparatus for incorporation into time-domain spectroscopy systems that creates a continuous reference whereby a sample pulses' phase and amplitude can be tracked and corrected employs a beam splitter to generate sample and reference pulses. A detector is positioned for receiving the reference radiation pulses that do not interact with the sample. The same detector is also positioned for receiving the sample radiation pulses that emerge from the sample. The apparatus can be readily implemented by being configured between the emitter and detector of a terahertz time-domain spectrometer. The reference pulse is used to trace the changes in time and amplitude of the sample pulse. Since any changes in the reference pulse will most likely manifest in the sample pulse, the reference pulse is monitored and used to correct the sample pulse and thereby reduce the effects of jitter.
Abstract:
An in-situ time domain spectroscopy (TDS)-based method (200) for non-contact characterization of properties of a sheet material while being produced by a manufacturing system (700). A time domain spectrometry system (100) and calibration data for the system (100) is provided. The calibration data includes data for transmitted power through or reflected power from the sheet material as a function of a moisture content of the sheet material. At least one pulse of THz or near THz radiation from a transmitter (111) is directed at a sample location on a sheet material sample (130) while being processed by the manufacturing system (700). Transmitted or reflected radiation associated with at least one transmitted or reflected pulse from the sample location is synchronously detected by a detector (110) to obtain the sample data. The sample data, which is coincident data, is processed together with the calibration data (207, 208, 209) to determine at least one, and generally a plurality of properties of the sheet material sample (130) selected from caliper, basis weight and moisture content.
Abstract:
An apparatus for incorporation into time-domain spectroscopy systems that creates a continuous reference whereby a sample pulses' phase and amplitude can be tracked and corrected employs a beam splitter to generate sample and reference pulses. A detector is positioned for receiving the reference radiation pulses that do not interact with the sample. The same detector is also positioned for receiving the sample radiation pulses that emerge from the sample. The apparatus can be readily implemented by being configured between the emitter and detector of a terahertz time-domain spectrometer. The reference pulse is used to trace the changes in time and amplitude of the sample pulse. Since any changes in the reference pulse will most likely manifest in the sample pulse, the reference pulse is monitored and used to correct the sample pulse and thereby reduce the effects of jitter.
Abstract:
An in-situ time domain spectroscopy (TDS)-based method (200) for non-contact characterization of properties of a sheet material while being produced by a manufacturing system (700). A time domain spectrometry system (100) and calibration data for the system is provided. The calibration data includes data for transmitted power through or reflected power from the sheet material as a function of a moisture content of the sheet material. At least one pulse of THz or near THz radiation from a transmitter (111) is directed at a location on a sheet material sample (130) while being processed by the manufacturing system (700). Transmitted or reflected radiation associated with at least one transmitted or reflected pulse from the sample location is synchronously detected by a detector (110) to obtain the sample data. The sample data, which is coincident data, is processed together with the calibration data (207, 208, 209) to determine at least one, and generally a plurality of properties of the sheet material sample (130) selected from caliper, basis weight and moisture content.
Abstract:
An apparatus for incorporation into time-domain spectroscopy systems that creates a continuous reference whereby a sample pulses' phase and amplitude can be tracked and corrected employs a beam splitter to generate sample and reference pulses. A detector is positioned for receiving the reference radiation pulses that do not interact with the sample. The same detector is also positioned for receiving the sample radiation pulses that emerge from the sample. The apparatus can be readily implemented by being configured between the emitter and detector of a terahertz time-domain spectrometer. The reference pulse is used to trace the changes in time and amplitude of the sample pulse. Since any changes in the reference pulse will most likely manifest in the sample pulse, the reference pulse is monitored and used to correct the sample pulse and thereby reduce the effects of jitter.