Abstract:
A method for depositing an encapsulation layer onto a surface of polymeric fibers and ballistic resistant fibrics. More particularly, the atomic layer deposition of materials onto non-semiconductive polymeric fibers and fabrics, and to fabrics having an conformal encapsulation layer that has been applied by atomic layer deposition.
Abstract:
A multilayered composite fabric which comprises (a) a first fabric comprising non-woven unidirectionally oriented fibers in a first resin matrix, the fibers comprising high tenacity fibers, the first fabric comprising first and second surfaces; and (b) a second fabric comprising multi-directionally oriented fibers optionally in a second resin matrix, the second fabric also comprising high tenacity fibers, the second fabric having first and second surfaces, the first surface of the second fabric being bonded to the second surface of the first fabric thereby forming the composite fabric. Also described is a method of making such fabric wherein the second fabric layer is used as a support during the manufacturing process and is thereafter consolidated into a single structure with the first fabric layer.
Abstract:
Flexible ballistic resistant composite material that has improved resistance to pick-up of water and other liquids, the composite material comprising a plurality of non-woven fibrous layers. The fibrous layers are formed from a network of high tenacity fibers (aramid fibers, extended chain polyethylene fibers and/or rigid rod fibers). The fibers are embedded in a matrix of a thermoplastic polyurethane resin. Preferably, at least two adjacent fiber layers are oriented in a cross-ply arrangement with respect to each other. Flexible armor, such as body vests, are provided which are formed at least in part from the flexible composite material.
Abstract:
Methods to determine the durability and wear-resistance of soft armor. Observations on field tested articles of soft body armor indicate that the materials are subject to a combination of flexing, tensile, compressive and abrasive forces. The forces and stresses to which soft armor articles are subjected to can be duplicated in a controlled, isolated, measurable, appropriate and intuitive manner, to correlate ballistic performance with durability and wear characteristics. The tests closely approximate the forces and stresses experienced in the end use of ballistic resistant composite articles.
Abstract:
Lightweight, ballistic resistant articles are provided. More particularly, armor structures incorporating two or more spaced apart, ballistic resistant panels, having superior impact and ballistic performance at a light weight. The panels are spaced by air or by an intermediate material.
Abstract:
Flexible ballistic resistant composite material that has improved resistance to pick-up of water and other liquids, the composite material comprising a plurality of non-woven fibrous layers. The fibrous layers are formed from a network of high tenacity fibers (aramid fibers, extended chain polyethylene fibers and/or rigid rod fibers). The fibers are embedded in a matrix of a thermoplastic polyurethane resin. Preferably, at least two adjacent fiber layers are oriented in a cross-ply arrangement with respect to each other. Flexible armor, such as body vests, are provided which are formed at least in part from the flexible composite material.
Abstract:
Composite materials combining both high and low strength fibrous materials. More particularly, composite materials that are useful as lightweight vest covers for tactical vests and that are suitable for the formation of alternatives to conventional Modular Lightweight Load-carrying Equipment (MOLLE).
Abstract:
An apparatus and method for evaluating the backface signature of flat panel ballistic resistant composites with accuracy, repeatability and improved correlation to the expected backface signature of shaped ballistic resistant composites in actual field use.
Abstract:
A multilayered composite fabric, the composite fabric comprising a first fabric comprising first and second non-woven unidirectionally oriented fiber layers. Each of the fiber layers is in a resin matrix and the fibers comprise high tenacity fibers. The fibers in the two fiber layers are disposed at an angle with respect to each other. The composite fabric includes a second fabric comprising multi-directionally oriented fibers optionally in a resin matrix. The second fabric also comprises high tenacity fibers. The first and second fabrics are bonded together to form the composite fabric, which has improved ballistic resistant properties. Plastic films may be adhered to one or both outer surfaces of the first fabric and can serve as the bonding agent between the two fabrics. Also described is a method of making a composite fabric.
Abstract:
Fabrication of ballistic resistant fibrous composites having improved ballistic resistance properties and retained or improved ballistic penetration resistance properties. The composites are formed from high tenacity fibers having a tenacity of at least about 33 g/denier at ambient room temperature after being modified by a plasma treatment or by a corona treatment, without tenacity loss due to said treatments.