Abstract:
A resin transfer molding (RTM) process is disclosed for rapidly filling a fibrous preform and/or a rigid, porous body with high viscosity resin or pitch. The process is suitable for impregnated multiple porous bodies stacked in a single mold. The process uses a fibrous preform or rigid porous body which is placed into a mold matching the desired part geometry. A resin is injected into the mold at temperature and pressure. After cooling, the infiltrated component is removed from the mold. The mold is constructed from two halves fitted to form at least one mold cavity. A gate fitted with a nozzle is set into one of the mold halves, and a valve admits resin or pitch into the gate area. Venting or vacuum can be applied to the mold. The mold is held in a hydraulic press and an extruder, optionally fitted with an accumulator, supplies molten resin or pitch to the mold.
Abstract:
Annular brake disc preform (15), wherein 40 to 80 layers of reinforcement fibers of at least two different lengths (11, 19) ranging from 10-60 mm are distributed in a planar gradient throughout the body of the preform, with the reinforcement fibers located near the exterior planes of the disc being predominately shorter fibers (11) and with the reinforcement fibers located in the central planes of the disc being predominately longer fibers (19). Also, process of making carbon-carbon composite preforms by: providing chopped pitch or PAN fibers (11, 19) of at least two different lengths; directing a robotic spraying apparatus to spray the chopped fibers into an annular mold (5) in 40 to 80 concentric iterations of chopped fiber deposition to provide a matrix of fibers in the mold; depositing a curable binder into the mold to intermix the binder with the fiber matrix; compressing the fiber matrix and curable binder within the mold; curing the binder to form a preform matrix; filling the preform matrix with pitch to form a pitch matrix; and subjecting the pitch matrix to chemical vapor deposition to form a carbon-carbon composite preform (15).
Abstract:
An aircraft brake piston housing (10) has a composite body (14) including a plurality of fibers embedded in a matrix, the body (14) including a central bore (18) and a plurality of circumferentially disposed openings (23) surrounding the bore (18), at least some of the circumferentially disposed openings (23) being configured to receive a brake piston (26), and a frame (12) embedded in the composite body (14) and formed from a material different than the matrix. Also a method of forming such a brake piston housing.
Abstract:
An aircraft wheel noise reduction fairing (8) includes a disk (10) having first and second sides (12, 14) and a plurality of circumferentially disposed openings (16) between the first side (12) and the second side (14) and at least one mesh structure (24,26) connected to the second side (14) of the disk (10) overlying the plurality of circumferentially disposed openings (16). Also the combination of an aircraft wheel (30) and a noise reduction fairing (8) wherein the aircraft wheel (30) includes a hub (32) surrounding a wheel axis of rotation (34), a web (36) projecting from the hub (32) and a cylindrical wall (40) having an inner surface (42) and an outer surface (44) connected to the web (36) and surrounding the axis of rotation (34). The wall (40) has an end edge (46) spaced from the web (36), a flange (48) spaced from the end edge (46) and projecting from the cylindrical wall (40), and the fairing (8) includes a plurality of circumferentially disposed openings and is mounted in the cylindrical space defined by the cylindrical wall (40).
Abstract:
SE OBTIENE UN MATERIAL COMPOSITO DE CARBONO - CARBONO A PARTIR DE UNA PREFORMA DE ESPUMA DE CARBONO CON CELULAS ABIERTAS, ESTANDO DICHA PREFORMA DENSIFICADA MEDIANTE UN MATERIAL CARBONADO. LA PREFORMA DE ESPUMA DE CARBONO CON CELULAS ABIERTAS PUEDE ESTABILIZARSE CON EL OXIGENO ANTES DE LA CARBONIZACION, Y LA PREFORMA DE LA ESPUMA DENSIFICADA POR CVD, HIP, PIC, VPI, INYECCION DE ALQUITRAN Y RESINA, O CUALQUIER COMBINACION DE ESTOS PROCEDIMIENTOS. EL MATERIAL COMPOSITO DE CARBONO - CARBONO PUEDE TRATARSE TERMICAMENTE PARA PRODUCIR MATERIALES TERMICOS DE GESTION DE LOS MATERIALES ESTRUCTURALES, O UN MATERIAL DE FROTAMIENTO QUE SE PUEDEN UTILIZAR EN UN MECANISMO DE FRENADO O DE EMBRAGUE.
Abstract:
Je popsán rychlý pretlacovací lis pro pryskyrici nebo smolu, který zahrnuje: transportní prvek (4) pro transport roztavené pryskyrice nebo smoly; formu (10) usporádanou pro prijetí roztavené pryskyrice nebo smoly a porézního predlisku (1, 18, 28, 47, 48, 55, 56), pricemž forma zahrnuje: horní polovinu (42); spodní polovinu (41), která je naproti horní polovine (42) usporádaná tak, že horní polovina (42) a spodní polovina (41) spolu tvorí dutinu (19, 29, 35) formy; alespon jeden vstup (36) umístený v horní polovine (42) nebo ve spodní polovine (41); výcnelky (20, 21, 30, 31) v dutine (19, 29, 35) formy, pricemž tyto výcnelky (20, 21, 30, 31) jsou usporádány pro zajištení tlakového gradientu a toku pryskyrice nebo smoly od vnitrní oblasti formy (10) smerem k vnejší oblasti formy (10); a prídržný prvek (12) usporádaný pro podržení formy (10) v prubehu vstrikování pryskyrice nebo smoly do formy (10). Dutina (19, 29, 35) formy vcetne výcnelku zahrnuje dutinu (19, 29, 35) formy se zkosenými stenami (30, 31) pusobícími jako výcnelky nebo dutinu (19, 29, 35) formy s radiálne procházejícím výcnelkem (20, 21) na vnejším prumeru dutiny formy. Popsán je také zpusob rychlého pretlacování pryskyrice nebo smoly.
Abstract:
A resin transfer molding (RTM) process is disclosed for rapidly filling a fibrous preform and/or a rigid, porous body with high viscosity resin or pitch. The process is suitable for impregnated multiple porous bodies stacked in a single mold. The process uses a fibrous preform or rigid porous body which is placed into a mold matching the desired part geometry. A resin is injected into the mold at temperature and pressure. After cooling, the infiltrated component is removed from the mold. The mold is constructed from two halves fitted to form at least one mold cavity. A gate fitted with a nozzle is set into one of the mold halves, and a valve admits resin or pitch into the gate area. Venting or vacuum can be applied to the mold. The mold is held in a hydraulic press and an extruder, optionally fitted with an accumulator, supplies molten resin or pitch to the mold.
Abstract:
A resin transfer molding (RTM) process is disclosed for rapidly filling a fibrous preform and/or a rigid, porous body with high viscosity resin or pitch. The process is suitable for impregnated multiple porous bodies stacked in a single mold. The process uses a fibrous preform or rigid porous body which is placed into a mold matching the desired part geometry. A resin is injected into the mold at temperature and pressure. After cooling, the infiltrated component is removed from the mold. The mold is constructed from two halves fitted to form at least one mold cavity. A gate fitted with a nozzle is set into one of the mold halves, and a valve admits resin or pitch into the gate area. Venting or vacuum can be applied to the mold. The mold is held in a hydraulic press and an extruder, optionally fitted with an accumulator, supplies molten resin or pitch to the mold.