Abstract:
Processes for the production of high strength polyethylene tape articles from high strength ultra-high molecular weight multi-filament yarns, and to the tape articles, fabrics, laminates and impact resistant materials made therefrom.
Abstract:
Dimensionally stable open woven fabrics formed from a plurality of high tenacity warp elongate bodies interwoven and bonded with a plurality of transversely disposed, high tenacity weft elongate bodies, composite articles formed therefrom, and to a continuous process for forming the composite articles.
Abstract:
Disclosed are laminates from multiple stacked plies of a uni-directional tape in which the tape formed from a plurality of ultra-high molecular weight polyethylene gel spun, multi-filament yarns. The resultant laminate contains not more than five percent resin by weight. Related methods of making a laminate of this type are also disclosed.
Abstract:
Tape articles having improved properties are made from ultra-high molecular weight (UHMW) multi-filament yarns. The tape articles can have a ratio of the low temperature area under the curve (120° C to Tm-onset) to the total area under the curve (120° C to 165° C) of less than about 0.15 as calculated from an increasing temperature DSC scan from a temperature of 30° C to a temperature of 200° C at a constant rate of 10° C per minute. Additionally, in some examples the tape articles can also have a tenacity at least about 24 g/d (2.06 GPa) when measured by ASTM D882-09 at a 10 inch (25.4 cm) gauge length and at an extension rate of 100%/min. Further, the tape articles can have no long period of less than 450 Angstroms () when measured by small angle x-ray analysis.
Abstract:
Woven fabrics are formed from high tenacity fibers or tapes that are loosely interwoven with adhesive coated filaments, to composite articles formed therefrom, and to a continuous process for forming the composite articles.
Abstract:
Processes for preparing ultra-high molecular weight polyethylene yarns, and the yarns and articles produced therefrom. The surfaces of partially oriented yarns are subjected to a treatment that enhances the surface energy at the fiber surfaces and are coated with a protective coating immediately after the treatment to increase the shelf life of the treatment. The coated, treated yarns are then post drawn to form highly oriented yarns.
Abstract:
High tenacity, high elongation multi-filament polymeric tapes as well as ballistic resistant fabrics, composites and articles made therefrom. The tapes are fabricated from multi-filament fibers/yarns that are twisted together, bonded together, compressed and flattened.
Abstract:
A composition comprises a solid-stated block copolymer of an aromatic polyester and a caprolactone, wherein the copolymer has been solid state polymerized such that intrinsic viscosity increases at least 20%, the caprolactone content decreases no more than 1.2% absolute and the transesterification increases no more than 3.5% absolute, and wherein the solid-stated copolymer has an intrinsic viscosity of at least 0.82. Particularly preferred chain extension reactions are performed at a temperature of less than 175°C, and even more preferably at less than 165°C. In further aspects of the inventive subject matter, yarns and methods of producing a fiber include contemplated solid-stated block copolymers.
Abstract:
Processes for preparing ultra-high molecular weight polyethylene yarns, and the yarns and articles produced therefrom. The surfaces of partially oriented yarns are subjected to a treatment that enhances the surface energy at the fiber surfaces and are coated with a protective coating immediately after the treatment to increase the shelf life of the treatment. The coated, treated yarns are then post drawn to form highly oriented yarns.
Abstract:
Tape articles having improved properties are made from ultra-high molecular weight (UHMW) multi-filament yarns. The tape articles can have a ratio of the low temperature area under the curve (120° C. to Tm-onset) to the total area under the curve (120° C. to 165° C.) of less than about 0.15 as calculated from an increasing temperature DSC scan from a temperature of 30° C. to a temperature of 200° C. at a constant rate of 10° C. per minute. Additionally, in some examples the tape articles can also have a tenacity at least about 24 g/d (2.06 GPa) when measured by ASTM D882-09 at a 10 inch (25.4 cm) gauge length and at an extension rate of 100%/min. Further, the tape articles can have no long period of less than 450 Angstroms (Å) when measured by small angle x-ray analysis.