Abstract:
A reconfigurable electro-magnetic tile includes a laser layer including a plurality of lasers, and a pixelated surface comprising a plurality of metal patches and a plurality of switches, wherein each respective switch of the plurality of switches is in a gap between a first respective metal patch and a second respective metal patch, wherein each respective switch is optically coupled to at least one respective laser of the plurality of lasers, and wherein each switch of the plurality of switches includes a phase change material.
Abstract:
A reconfigurable electro-magnetic tile includes a laser layer including a plurality of lasers, and a pixelated surface comprising a plurality of metal patches and a plurality of switches, wherein each respective switch of the plurality of switches is in a gap between a first respective metal patch and a second respective metal patch, wherein each respective switch is optically coupled to at least one respective laser of the plurality of lasers, and wherein each switch of the plurality of switches includes a phase change material.
Abstract:
An apparatus, system, and/or method are described to enable optically transparent reconfigurable integrated electrical components, such as antennas and RF circuits to be integrated into an optically transparent host platform, such as glass. In one embodiment, an Ag NW film may be configured as a transparent conductor for antennas and/or as interconnects for passive circuit components, such as capacitors or resistors. Ag NW may also be used as transmission lines and/or interconnect overlays for devices. A graphene film may also be configured as active channel material for making active RF devices, such as amplifiers and switches.
Abstract:
A reconfigurable radio frequency aperture including a substrate, a plurality of reconfigurable patches on the substrate, and a plurality of reconfigurable coupling elements on the substrate, wherein at least one reconfigurable coupling element is coupled between a reconfigurable patch and another reconfigurable patch, and wherein the reconfigurable coupling elements affect the mutual coupling between reconfigurable patches.
Abstract:
A reconfigurable electro-magnetic tile includes a laser layer including a plurality of lasers, and a pixelated surface comprising a plurality of metal patches and a plurality of switches, wherein each respective switch of the plurality of switches is in a gap between a first respective metal patch and a second respective metal patch, wherein each respective switch is optically coupled to at least one respective laser of the plurality of lasers, and wherein each switch of the plurality of switches includes a phase change material.
Abstract:
A reconfigurable radio frequency aperture including a substrate, a plurality of reconfigurable patches on the substrate, and a plurality of reconfigurable coupling elements on the substrate, wherein at least one reconfigurable coupling element is coupled between a reconfigurable patch and another reconfigurable patch, and wherein the reconfigurable coupling elements affect the mutual coupling between reconfigurable patches.
Abstract:
A reconfigurable electro-magnetic tile includes a laser layer including a plurality of lasers, and a pixelated surface comprising a plurality of metal patches and a plurality of switches, wherein each respective switch of the plurality of switches is in a gap between a first respective metal patch and a second respective metal patch, wherein each respective switch is optically coupled to at least one respective laser of the plurality of lasers, and wherein each switch of the plurality of switches comprises a phase change material.