Abstract:
An ultra-wideband beamformer is provided by using conventional phase shifting techniques to impress data and antenna scan information onto a narrow band signal. A non-linear element then converts the narrow sine wave into ultra-wideband pulses. Phase shift key modulation impresses data information onto the sine wave in the form of a phase shift. The data-bearing sine wave is split into multiple transmission lines where each provides an additional antenna scanning phase shift. The non-linear element converts each phase of the sine wave into short pulses which are sent to radiating elements for transmission. In the far-field of the beam, the scan delays between the radiating elements are canceled out, such that the fields from each radiating element are summed and the pulse position modulated data recovered.
Abstract:
Methods and apparatus for constructing phased array antenna beamforming networks are provided, that allow to scan multiple beams and select appropriate sets of delaylines simultaneously. The beamforming networks disclosed herein generate less losses than conventional ones and in some caes, do not require active switching, making them completely passive. Three main methods are comprised in the invention: (1) laser wavelength hierarchies, (2) arrangements of Wavelengths Division Multiplexing (WDM) components, (3) re-use of laser wavelengths. Multiple laser wavelengths are arranged in groups and subgroups (wavelength heirarchies) in the wavelength domain. By switching between these wavelength groupies, the arrangements of WDM components disclosed herein enable the beamforming network to direct the beam signals to the proper time delay lines, and to differentiate multiple beams. The method of laser wavelength re-use permits to significantly reduce the number of wavelength utilized, and thus to limit them to the standard wavelengths specified by the ITU.
Abstract:
Methods and apparatus for constructing phased array antenna beamforming networks are provided, that allow to scan multiple beams and select appropriate sets of delay lines simultaneously. The beamforming networks disclosed herein generate less losses than conventional ones and in some cases, do not require active switching, making them completely passive. Three main methods are comprised in the invention: (1) laser wavelength hierarchies, (2) arrangements of Wavelengths Division Multiplexing (WDM) components, (3) re-use of laser wavelengths. Multiple laser wavelengths are arranged in groups and subgroups (wavelength hierarchies) in the wavelength domain. By switching between these wavelength groupings, the arrangements of WDM components disclosed herein enable the beamforming network to direct the beam signals to the proper time delay lines, and to differentiate multiple beams. The method of laser wavelength re-use permits to significantly reduce the number of wavelengths utilized, and thus to limit them to the standard wavelengths specified by the ITU.
Abstract:
Methods and apparatus for constructing phased array antenna beamforming networks are provided, that allow to scan multiple beams and select appropriate sets of delaylines simultaneously. The beamforming networks disclosed herein generate less losses than conventional ones and in some caes, do not require active switching, making them completely passive. Three main methods are comprised in the invention: (1) laser wavelength hierarchies, (2) arrangements of Wavelengths Division Multiplexing (WDM) components, (3) re-use of laser wavelengths. Multiple laser wavelengths are arranged in groups and subgroups (wavelength heirarchies) in the wavelength domain. By switching between these wavelength groupies, the arrangements of WDM components disclosed herein enable the beamforming network to direct the beam signals to the proper time delay lines, and to differentiate multiple beams. The method of laser wavelength re-use permits to significantly reduce the number of wavelength utilized, and thus to limit them to the standard wavelengths specified by the ITU.
Abstract:
An ultra-wideband beamformer is provided by using conventional phase shifting techniques to impress data and antenna scan information onto a narrow band signal. A non-linear element then converts the narrow sine wave into ultra-wideband pulses. Phase shift key modulation impresses data information onto the sine wave in the form of a phase shift. The additional antenna scanning phase shift. The non-linear element converts each phase of the sine wave into short pulses which are sent to radiating elements for transmission. In the far-field of the beam, the scan delays between the radiating elements are canceled out, such that the fields from each radiating element are summed and the pulse position modulated data recovered.