Abstract:
An integrated circuit masterslice (2) in which a plurality of mutually spaced epitaxial columns (4) are formed on an insulative substrate (6). Each column (4) has successive pairs of n-channel FETs (10) alternating with successive pairs of p-channel FETs (8), the contacts of which are accessible by a surface metallization. Drain and source contacts (12, 16, 20, 24) are shared by adjacent FETs, and corresponding elements on adjacent columns are arranged in rows. The masterslice (2) accommodates a wide variety of circuits with a high density transistor grid and interconnect metallization.
Abstract:
A resist structure used in fabricating microelectronic devices on a substrate by lithography includes three layers, a thick planarizing layer (20) of a polymer material in contact with the substrate (12) and having a generally planar upper surface, a separating layer (26) overlying the planarizing layer (20), and an imaging layer (28) of a resist material overlying the separating layer (26). The separating layer (26) is a light transparent and electrically conductive material, preferably a mixture of indium oxide and tin oxide. An etched resist structure is formed on the substrate (12) by defining and developing a pattern in the imaging layer (28), transferring the pattern to the separating layer (26), and transferring the pattern to the planarizing layer (20).
Abstract:
A high-density MOSFET (10) having field oxide (24) self-aligned channel stops (26, 27) for device isolation and an optimal method of fabricating such a device. The process provides channel stops (26, 27) underlying and aligned with the edges of a field oxide layer (24) and allows the dopant concentration of the channel stops (26, 27) to be established separately from that of the active device channel region (16) by use of an independent channel stop implant. The active devices (10) thus formed require minimal isolation area, have a high field threshold voltage, a low junction capacitance, and minimal body effect. They are particularly useful in high-speed, high-performance integrated circuits.
Abstract:
An integrated circuit masterslice (2) in which a plurality of mutually spaced epitaxial columns (4) are formed on an insulative substrate (6). Each column (4) has successive pairs of n-channel FETs (10) alternating with successive pairs of p-channel FETs (8), the contacts of which are accessible by a surface metallization. Drain and source contacts (12, 16, 20, 24) are shared by adjacent FETs, and corresponding elements on adjacent columns are arranged in rows. The masterslice (2) accommodates a wide variety of circuits with a high density transistor grid and interconnect metallization.
Abstract:
Dans la tranche standardisée (2) à circuits intégrés, une pluralité de colonnes épitaxiales mutuellement espacées (4) sont formées sur un substrat isolant (6). Chaque colonne (4) possède des paires successives de transistors à effet de champ TECs à canaux n (10) s'alternant avec des paires successives de TECs à canaux p (8), dont les contacts sont accessibles par une métallisation de surface. Des contacts de drain et de source (12, 16, 20, 24) sont partagés par les TECs adjacents, et des éléments correspondant sur des colonnes adjacentes sont disposés en rangées. La tranche standardisée (2) accepte une grande variété de circuits avec une métallisation d'interconnexion et de grille de transistor de grande densité.
Abstract:
A resist structure used in fabricating microelectronic devices on a substrate by lithography includes three layers, a thick planarizing layer (20) of a polymer material in contact with the substrate (12) and having a generally planar upper surface, a separating layer (26) overlying the planarizing layer (20), and an imaging layer (28) of a resist material overlying the separating layer (26). The separating layer (26) is a light transparent and electrically conductive material, preferably a mixture of indium oxide and tin oxide. An etched resist structure is formed on the substrate (12) by defining and developing a pattern in the imaging layer (28), transferring the pattern to the separating layer (26), and transferring the pattern to the planarizing layer (20).
Abstract:
A high-density MOSFET (10) having field oxide (24) self-aligned channel stops (26, 27) for device isolation and an optimal method of fabricating such a device. The process provides channel stops (26, 27) underlying and aligned with the edges of a field oxide layer (24) and allows the dopant concentration of the channel stops (26, 27) to be established separately from that of the active device channel region (16) by use of an independent channel stop implant. The active devices (10) thus formed require minimal isolation area, have a high field threshold voltage, a low junction capacitance, and minimal body effect. They are particularly useful in high-speed, high-performance integrated circuits.
Abstract:
MOSFET à densité élevée (10) possédant des arrêts de canaux auto-alignés (26, 27) d'oxyde de champ (24) pour l'isolation du dispositif et procédé optimal de fabrication d'un tel dispositif. Le procédé permet de réaliser des arrêts de canaux (26, 27) sous-jacents et alignés avec les bords d'une couche d'oxyde de champ (24) et permet à la concentration de dopant des arrêts de canaux (26, 27) d'être fixée séparément de celle de la région de canaux du dispositif actif (16) en utilisant un implant d'arrêt de canal indépendant. Les dispositifs actifs (10) ainsi formés ne requièrent qu'une zone minimale d'isolation, présentent une tension élevée de seuil de champ, une faible capacitance de jonction et un effet de corps minime. Ils sont particulièrement utiles dans des circuits intégrés à haute vitesse et performances élevées.