Abstract:
A lens antenna (10) having four phased array apertures (12, 14, 16, and 18) positioned for hemispherical coverage is disclosed. An array of phase shifters (52) is disclosed, each of which is interconnected with four radiating elements (54, 56, 58, and 60), one on each of the four apertures. A feed horn (30) is used to feed the lens and switches (48, 50) in the lens are used to switch the energy received from the feed horn to the phase shifter, and after phase shifting, to a selected aperture for radiation. The switches also perform a reciprocal function by switching energy received at an aperture to the phase shifter and then to an aperture for radiation to the feed horn. In a further embodiment, the mounting of transmitting and receiving components, such as a high power amplifier (70) and a low noise amplifier (72), with a combination of DPDT switches in the lens is disclosed and results in a solid state T/R type antenna array. In one embodiment, the switches enable the lens to radiate from three of the apertures for a scan angle of 270 degrees from a single feed horn. The addition of mor efeed horns per face results in multiple radiated beams from a single face.
Abstract:
A low sidelobe, solid state array antenna apparatus comprises a large radiating aperture divided into a large number, N, of small, closely spaced radiating apertures, each small radiating aperture having associated therewith a radiating element and a linearly polarized solid state power module. The large radiating aperture is divided into M, preferably between (3) and about (10), differently sized, elliptically shaped, concentric radiating zones superimposed, for analysis purposes, upon another. Each such zone has an output voltage amplitude, Ei, and semi-major and semi-minor axes of respective lengths, ai and bi, each zone being considered separately in the far field equation: G( theta , PHI ) = [f( theta ,$ gamma ( PHI ) (â theta cos PHI - â PHI sin PHI cos theta )] , wherein f( theta , PHI ) = (I), ui = (II), J1 i is the first order Bessel function, â theta and â PHI are unit vectors in the spherical coordinates and Ko is the wave number associated with the radiated field. Using the far field equation, values of Ei, ai and bi for each zone are computed which result in the far field sidelobe peak gain being a minimum or being a specified number of dB, for example, at least about 30 dB, below the far field mainlobe gain. The values of Ei in overlapping zones are summed to establish the required voltage amplitudes of the underlying power modules associated with the N radiation apertures.
Abstract:
A millimeter-wave phase shifter for use at high millimeter-wave frequencies. The phase shifter employs continuous aperture ferrite and corrugated horns to make a reciprocal phase shifter in the frequency range of interest. Applied linearly polarized energy is expanded in cross-section by means of a first corrugated horn (23). The expanded energy is focused by a first lens (27), circularly polarized (24) and applied to a ferrite phase shifting section (22). The phase shift applied to the energy is controlled by means of phase control circuitry (28) and a yoke (31) and coil (32) arrangement. The phase-shifted energy is then converted to linearly polarized energy by a second circular polarizer (34) focused by a second lens (37) and contracted in cross-section by a corrugated horn (38). The use of the corrugated horns, polarizers, lenses and ferrite phase shifting components allows a much larger device to be fabricated and hence physical tolerances are reduced by an order of magnitude for the frequency range of interest. In addition, both the efficiency and power handling capability are greatly improved. Both reciprocal and nonreciprocal phase shifters are disclosed.
Abstract:
A radiating element (10) having a continuous aperture substantially greater than one half the center frequency wavelength for use in an electronically scanned phased array antenna operating in the range of 94 GHz. The new radiating element comprises a ferrite block (12) having a radiating aperture which measures 5 lambda by 5 lambda in contrast to the conventional discrete radiating element which measures one-half lambda by one-half lambda. A tapered magnetization (see lines 22) is applied to the continuous aperture ferrite block (12). The degree of phase shift can be varied by adjusting the slope of the tapered magnetization. This permits scanning of the continuous aperture pattern. When a plurality of such continuous aperture subarrays is used to form an antenna array (80 or 100), provision is made to adjust the phase at the center of each continuous aperture subarray with respect to the phase of the adjacent subarrays, thereby allowing scanning of the entire pattern of the phased array antenna (100).
Abstract:
Radiolentille (10) ayant quatre ouvertures (12, 14, 16, et 18) de réseau piloté en phase positionnées de manière à assurer une couverture hémisphérique. Un agencement de compensateurs de phase (52) dont chacun est interconnecté avec quatre éléments (54, 56, 58 et 60) radiants, un sur chacune des quatre ouvertures. Un cornet d'alimentation (30) est utilisé pour alimenter la lentille, et des commutateurs (48, 50) dans la lentille sont utilisés pour commuter l'énergie reçue du cornet d'alimentation vers les compensateurs de phase, et après compensation de phase, vers une ouverture sélectionnée afin de rayonner. Les commutateurs jouent également un rôle en commutant l'énergie reçue d'une ouverture compensateur de phase et ensuite au cornet d'alimentation. Dans un autre mode de réalisation, le montage de composants transmetteurs et récepteurs, tel qu'un amplificateur (70) de haute puissance et un amplificateur à faible bruit (72), avec une combinaison de commutateurs inverseurs bipolaires et bidirectionnels dans la lentille est divulgué et débouche sur un réseeau d'antenne de type à semi-conducteur transmetteur-récepteur. Dans un mode de réalisation, les commutateurs permettent à la lentille de rayonner à partir de trois des ouvertures, pour un angle de balayage de 270 degrés à partir d'un seul cornet d'alimentation. L'adjonction par face d'autres cornets d'alimentation produit des faisceaux radiant multiples à partir d'une face.
Abstract:
A low sidelobe, solid state array antenna apparatus comprises a large radiating aperture divided into a large number, N, of small, closely spaced radiating apertures, each small radiating aperture having associated therewith a radiating element and a linearly polarized solid state power module. The large radiating aperture is divided into M, preferably between (3) and about (10), differently sized, elliptically shaped, concentric radiating zones superimposed, for analysis purposes, upon another. Each such zone has an output voltage amplitude, Ei, and semi-major and semi-minor axes of respective lengths, ai and bi, each zone being considered separately in the far field equation: G(,PHI) = [f(PHI) (â cos PHI - âPHI sin PHI cos )]2, wherein f(,PHI) = (I), ui = (II), J1(ui) is the first order Bessel function, â and âPHI are unit vectors in the spherical coordinates and Ko is the wave number associated with the radiated field. Using the far field equation, values of Ei, ai and bi for each zone are computed which result in the far field sidelobe peak gain being a minimum or being a specified number of dB, for example, at least about 30 dB, below the far field mainlobe gain. The values of Ei in overlapping zones are summed to establish the required voltage amplitudes of the underlying power modules associated with the N radiation apertures.
Abstract:
Un appareil d'antenne à réseau à semi-conducteurs à faible rayonnement du lobe latéral comprend une grande ouverture de rayonnement divisée en un grand nombre N, de petites ouvertures de rayonnement étroitement espacées, chaque petite ouverture de rayonnement étant associée à un élément de rayonnement et à un module de puissance à semi-conducteurs polarisé linéairement. La grande ouverture de rayonnement est divisée en M, de préférence entre 3 et environ 10 zones de rayonnement concentriques, de forme elliptique et de dimensions différentes, superposées les unes sur les autres, à des fins d'analyse. Chacune de ces zones possède une amplitude de tension de sortie Ei, et des axes semi-majeurs et semi-mineurs de longueurs respectives, ai et bi, chaque zone étant considérée séparément dans l'équation du champ éloigné G(,PHI) = [f(,PHI) (â cos PHI - âg(F) sin PHI cos ) ]2, dans laquelle f(,PHI) = (I), ui = (II), J1(ui) est la fonction de Bessel de premier ordre, â et âPHI sont des vecteurs unitaires dans les coordonnés sphériques et Ko est le nombre d'ondes associées au champ de rayonnement. A l'aide de l'équation du champ éloigné, les valeurs de Ei, ai et bi pour chaque zone sont calculées, d'où il résulte un gain de crête du lobe latéral du champ éloigné qui se trouve à un minimum ou un nombre spécifique de dB, par exemple au moins 30dB, en dessous du gain du lob principal du champ éloigné. Les valeurs de Ei dans les zones de chevauchement sont aditionnées pour établir les amplitudes de tension requises des modules de puissance sous-jacents associés aux N ouvertures de rayonnement.
Abstract:
A lens antenna (10) having four phased array apertures (12, 14, 16, and 18) positioned for hemispherical coverage is disclosed. An array of phase shifters (52) is disclosed, each of which is interconnected with four radiating elements (54, 56, 58, and 60), one on each of the four apertures. A feed horn (30) is used to feed the lens and switches (48, 50) in the lens are used to switch the energy received from the feed horn to the phase shifter, and after phase shifting, to a selected aperture for radiation. The switches also perform a reciprocal function by switching energy received at an aperture to the phase shifter and then to an aperture for radiation to the feed horn. In a further embodiment, the mounting of transmitting and receiving components, such as a high power amplifier (70) and a low noise amplifier (72), with a combination of DPDT switches in the lens is disclosed and results in a solid state T/R type antenna array. In one embodiment, the switches enable the lens to radiate from three of the apertures for a scan angle of 270 degrees from a single feed horn. The addition of mor efeed horns per face results in multiple radiated beams from a single face.
Abstract:
A millimeter-wave phase shifter for use at high millimeter-wave frequencies. The phase shifter employs continuous aperture ferrite and corrugated horns to make a reciprocal phase shifter in the frequency range of interest. Applied linearly polarized energy is expanded in cross-section by means of a first corrugated horn (23). The expanded energy is focused by a first lens (27), circularly polarized (24) and applied to a ferrite phase shifting section (22). The phase shift applied to the energy is controlled by means of phase control circuitry (28) and a yoke (31) and coil (32) arrangement. The phase-shifted energy is then converted to linearly polarized energy by a second circular polarizer (34) focused by a second lens (37) and contracted in cross-section by a corrugated horn (38). The use of the corrugated horns, polarizers, lenses and ferrite phase shifting components allows a much larger device to be fabricated and hence physical tolerances are reduced by an order of magnitude for the frequency range of interest. In addition, both the efficiency and power handling capability are greatly improved. Both reciprocal and nonreciprocal phase shifters are disclosed.
Abstract:
A radiating element (10) having a continuous aperture substantially greater than one half the center frequency wavelength for use in an electronically scanned phased array antenna operating in the range of 94 GHz. The new radiating element comprises a ferrite block (12) having a radiating aperture which measures 5 lambda by 5 lambda in contrast to the conventional discrete radiating element which measures one-half lambda by one-half lambda. A tapered magnetization (see lines 22) is applied to the continuous aperture ferrite block (12). The degree of phase shift can be varied by adjusting the slope of the tapered magnetization. This permits scanning of the continuous aperture pattern. When a plurality of such continuous aperture subarrays is used to form an antenna array (80 or 100), provision is made to adjust the phase at the center of each continuous aperture subarray with respect to the phase of the adjacent subarrays, thereby allowing scanning of the entire pattern of the phased array antenna (100).