NEURAL NETWORK PROCESSOR
    1.
    发明申请
    NEURAL NETWORK PROCESSOR 审中-公开
    神经网络处理器

    公开(公告)号:WO1991019267A1

    公开(公告)日:1991-12-12

    申请号:PCT/US1991001356

    申请日:1991-02-26

    CPC classification number: G06N3/063

    Abstract: The neural engine (20) is a hardware implementation of a neural network for use in real-time systems. The neural engine (20) includes a control circuit (26) and one or more multiply/accumulate circuit (28) includes a parallel/serial arrangement of multiple multiplier/accumulators interconnected with weight storage elements to yield multiple neural weightings and sums in a single clock cycle. A neural processing language is used to program the neural engine (20) through a conventional host personal computer (22). The parallel processing permits very high processing speeds to permit real-time pattern classification capability.

    Abstract translation: 神经引擎(20)是用于实时系统的神经网络的硬件实现。 所述神经发动机(20)包括控制电路(26),并且一个或多个乘法/累加电路(28)包括与重量存储元件互连的多个乘法器/累加器的并行/串行布置,以产生多个神经权重并且在单个 时钟周期。 神经处理语言用于通过常规主机个人计算机(22)对神经发动机(20)进行编程。 并行处理允许非常高的处理速度,以允许实时模式分类功能。

    METHOD AND PARALLEL PROCESSOR COMPUTING APPARATUS FOR DETERMINING THE THREE-DIMENSIONAL COORDINATES OF OBJECTS USING DATA FROM TWO-DIMENSIONAL SENSORS
    2.
    发明申请
    METHOD AND PARALLEL PROCESSOR COMPUTING APPARATUS FOR DETERMINING THE THREE-DIMENSIONAL COORDINATES OF OBJECTS USING DATA FROM TWO-DIMENSIONAL SENSORS 审中-公开
    使用二维传感器数据确定目标三维坐标的方法和并行处理器计算装置

    公开(公告)号:WO1993002366A1

    公开(公告)日:1993-02-04

    申请号:PCT/US1992006046

    申请日:1992-07-17

    CPC classification number: G01S5/04

    Abstract: First and second passive sensors (14, 16), which may be mounted on different earth orbiting satellites, provide relative azimuth and elevation coordinates to sensed objects (A, B, C) such as hostile missiles. Minimum and maximum possible ranges to the objects (A, B, C) along lines-of-sight (18a, 18b, 18c) from the first sensor (14) are predetermined, and used to calculate "range lines" (24, 26, 28) which are coincident with the lines-of-sight (18a, 18b, 18c) and extend from the respective minimum to maximum ranges respectively. The range lines (24, 26, 28) are transformed into the field of view of the second sensor (16), and matched to the azimuth and elevation coordinates of the respective objects (A, B, C) using a basic feasible solution (greedy) or global optimization algorithm. The approximate points of intersection of lines-of-sight (20a, 20b, 20c) from the second sensor (16) to the objects (A, B, C) and matched range lines (24, 26, 28), are calculated, and transformed into coordinates relative to a reference point (10) such as the center of the earth (12). The calculations for the individual objects (A, B, C) may be performed simultaneously using parallel processors (44a, 44b, 44c) in a single instruction stream - multiple data stream (SIMD) or similar computing arrangement (40).

    Abstract translation: 可以安装在不同的地球轨道卫星上的第一和第二无源传感器(14,16)为诸如敌对导弹的感测对象(A,B,C)提供相对的方位角和仰角坐标。 预定来自第一传感器(14)的沿视线(18a,18b,18c)的对象(A,B,C)的最小和最大可能范围,并用于计算“范围线”(24,26 ,28),其与视线(18a,18b,18c)重合,并分别从相应的最小值到最大范围。 将范围线(24,26,28)变换为第二传感器(16)的视野,并且使用基本可行解(A,B,C)与各个对象(A,B,C)的方位角和仰角坐标相匹配 贪心)或全局优化算法。 计算从第二传感器(16)到对象(A,B,C)和匹配范围线(24,26,28)的视线(20a,20b,20c)的相交点的近似点, 并相对于诸如地球(12)的中心的参考点(10)变换为坐标。 单个对象(A,B,C)的计算可以在单个指令流 - 多数据流(SIMD)或类似的计算装置(40)中使用并行处理器(44a,44b,44c)同时执行。

    METHOD AND PARALLEL PROCESSOR COMPUTING APPARATUS FOR DETERMINING THE THREE-DIMENSIONAL COORDINATES OF OBJECTS USING DATA FROM TWO-DIMENSIONAL SENSORS
    3.
    发明授权
    METHOD AND PARALLEL PROCESSOR COMPUTING APPARATUS FOR DETERMINING THE THREE-DIMENSIONAL COORDINATES OF OBJECTS USING DATA FROM TWO-DIMENSIONAL SENSORS 失效
    与用于确定由二维传感器的装置中的三维坐标的对象数据并行处理器方法和计算装置

    公开(公告)号:EP0549788B1

    公开(公告)日:1996-09-11

    申请号:EP92917210.4

    申请日:1992-07-17

    Inventor: WOO, Steven, C.

    CPC classification number: G01S5/04

    Abstract: First and second passive sensors (14, 16), which may be mounted on different earth orbiting satellites, provide relative azimuth and elevation coordinates to sensed objects (A, B, C) such as hostile missiles. Minimum and maximum possible ranges to the objects (A, B, C) along lines-of-sight (18a, 18b, 18c) from the first sensor (14) are predetermined, and used to calculate 'range lines' (24, 26, 28) which are coincident with the lines-of-sight (18a, 18b, 18c) and extend from the respective minimum to maximum ranges respectively. The range lines (24, 26, 28) are transformed into the field of view of the second sensor (16), and matched to the azimuth and elevation coordinates of the respective objects (A, B, C) using a basic feasible solution (greedy) or global optimization algorithm. The approximate points of intersection of lines-of-sight (20a, 20b, 20c) from the second sensor (16) to the objects (A, B, C) and matched range lines (24, 26, 28), are calculated, and transformed into coordinates relative to a reference point (10) such as the center of the earth (12). The calculations for the individual objects (A, B, C) may be performed simultaneously using parallel processors (44a, 44b, 44c) in a single instruction stream - multiple data stream (SIMD) or similar computing arrangement (40).

    METHOD AND PARALLEL PROCESSOR COMPUTING APPARATUS FOR DETERMINING THE THREE-DIMENSIONAL COORDINATES OF OBJECTS USING DATA FROM TWO-DIMENSIONAL SENSORS
    4.
    发明公开
    METHOD AND PARALLEL PROCESSOR COMPUTING APPARATUS FOR DETERMINING THE THREE-DIMENSIONAL COORDINATES OF OBJECTS USING DATA FROM TWO-DIMENSIONAL SENSORS 失效
    法和计算装置与用于确定由二维传感器的装置中的三维坐标的对象的数据并行处理器。

    公开(公告)号:EP0549788A1

    公开(公告)日:1993-07-07

    申请号:EP92917210.0

    申请日:1992-07-17

    Inventor: WOO, Steven, C.

    CPC classification number: G01S5/04

    Abstract: Des premier et second détecteurs passifs (14, 16), pouvant être montés sur des satellites placés sur différentes orbites terrestres, fournissent des coordonnées relatives d'azimut et d'élévation à des objets détectés (A, B, C) tels que des missiles hostiles. Des distances possibles minimum et maximum aux objets (A, B, C) le long de lignes de visée (18a, 18b, 18c) sont prédéterminées à partir du premier détecteur (14), et sont utilisées pour calculer "des lignes de distance" (24, 26, 28) qui coïncident avec les lignes de visée (18a, 18b, 18c) et s'étendent depuis les distances respectives minimum à maximum, respectivement. Les lignes de distance (24, 26, 28) sont transformées en champ de vision du second détecteur (16) pour correspondre aux coordonnées d'azimut et d'élévation des objets respectifs (A, B, C) en utilisant une solution faisable de base (avide) ou un algorithme d'optimalisation globale. Les points approximatifs d'intersection des lignes de visée (20a, 20b, 20c) allant du second détecteur (16) aux objets (A, B, C) et des lignes de distances appariées (24, 26, 28) sont calculés et transformés en coordonnées par rapport à un point de référence (10) tel que le centre de la terre (12). Les calculs pour les objets individuels (A, B, C) peuvent être effectués simultanément en utilisant des processeurs parallèles (44a, 44b, 44c) dans un train de mono-instruction/multidonnées (SIMD) ou un agencement de calcul similaire (40).

Patent Agency Ranking