Abstract:
Provided are a method, system and program for selecting a path comprising ports on primary and secondary clusters to use to transmit data at a primary volume to a secondary volume. A request is received to copy data from a primary storage location to a secondary storage location. A determination is made from a plurality of primary clusters of an owner primary cluster for the primary storage location, wherein the primary clusters are configured to access the primary storage location. A determination is made as to whether there is at least one port on the owner primary cluster providing an available path to the secondary storage location. One port on the owner primary cluster is selected to use to copy the data to the secondary storage location in response to determining that there is at least one port on the owner primary cluster available to transmit to the secondary storage location.
Abstract:
Provided are a method, system and article of manufacture, wherein in certain embodiments an I/O command from a host is received at a first storage unit. An identifier is generated that identifies a destination to which the I/O command is to be transmitted from the first storage unit. The I/O command is augmented with the generated identifier at the first storage unit. The augmented I/O command is transmitted. In certain other embodiments, an I/O command is received at a storage unit, wherein the storage unit is associated with a storage unit identifier. A determination is made at the storage unit, whether the I/O command is associated with an identifier that identifies a destination for which the I/O command is intended. A further determination is made, at the storage unit, whether the identifier is the same as the storage unit identifier, in response to determining that the identifier associated with the I/O command identifies the destination for which the I/O command is intended.
Abstract:
PROBLEM TO BE SOLVED: To provide a method, system and program for assigning a priority order. SOLUTION: The technique for assigning a priority order is disclosed. A request for operating data is received. The type of the request is specified. The priority order is assigned to the request based on the type of the request. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
Provided are a method, system, and article of manufacture for splitting writes between a storage controller and replication engine. A splitter executing in a storage controller manages access to primary volumes. An initialization command is received to communicate with a replication engine. A replication command is received for one primary volume and the primary volume is indicated as subject to replication. A write request is received to write data to a target primary volume of the primary volumes that is indicated as subject to the replication. The data in the write request is written to the target primary volume. The data in the write request is sent to the replication engine. The replication engine executes a copy services function associated with the target primary volume to write the data to a replication engine volume.
Abstract:
A disk file digital servo control system utilizes a state estimator wherein the voice coil motor (VCM) (40) current is modeled, rather than measured, thereby eliminating the need for analog-to-digital conversion of the actual VCM current. The VCM current is fed back directly to the input to the power amplifier (42) where it is summed with the control signal output. This effectively changes the integrating power amplifier into a low pass filtering power amplifier, with linear input-output characteristics. Thus, during track following or short seeks, the VCM current is estimated based on this linear model. During long seeks, when the power amplifier is saturated, the VCM current is modeled based upon the known VCM characteristics during saturation, which include the effects of the back electromotive force and the coil current rise time. The microprocessor (50) in the digital servo control system determines which VCM current model to use by a determination of when the power amplifier is in saturation. In the preferred embodiment, the microprocessor determines power amplifier saturation based upon a value of the head velocity error, which is the difference between the commanded velocity and the estimated velocity.
Abstract:
A disk file digital servo control system utilizes a state estimator wherein the voice coil motor (VCM) (40) current is modeled, rather than measured, thereby eliminating the need for analog-to-digital conversion of the actual VCM current. The VCM current is fed back directly to the input to the power amplifier (42) where it is summed with the control signal output. This effectively changes the integrating power amplifier into a low pass filtering power amplifier, with linear input-output characteristics. Thus, during track following or short seeks, the VCM current is estimated based on this linear model. During long seeks, when the power amplifier is saturated, the VCM current is modeled based upon the known VCM characteristics during saturation, which include the effects of the back electromotive force and the coil current rise time. The microprocessor (50) in the digital servo control system determines which VCM current model to use by a determination of when the power amplifier is in saturation. In the preferred embodiment, the microprocessor determines power amplifier saturation based upon a value of the head velocity error, which is the difference between the commanded velocity and the estimated velocity.