Abstract:
A virtual machine manager (VMM) enables provisioning of services to multiple clients via a single data processing system configured as multiple virtual machines. The VMM performs several management functions, including: configuring/assigning each virtual machine (VM) for/to a specific, single client; scheduling the time and order for completing client services via the assigned client VM; instantiating a client VM at a scheduled time and triggering the execution of services tasks required for completing the specific client services on the client VM; monitoring and recording historical information about the actual completion times of services on a client VM; and updating a scheduling order for sequential instantiating of the multiple client VMs and corresponding client services, based on one or more of (i) pre-established time preferences, (ii) priority considerations, and (iii) historical data related to actual completion times of client services at a client VM.
Abstract:
A monitoring program contains a method for detecting a load imbalance in a group of servers and providing notification so that corrections can be made. An embodiment of the invention reads from the address resolution protocol (ARP) cache to determine which server addresses are present, then clears the ARP cache. The address resolution protocol will repopulate the cache from traffic it snoops and from new requests. By performing this query and clear operation periodically, the tracking program can form a picture of the activity levels of the servers. When a significant imbalance exists, the program notifies a control console for human intervention to solve the problem. The tracking program will periodically write its results to a log file, allowing reports for various time periods to be produced as needed. By this mechanism, not only can an imbalance be quickly detected, but underutilization can be picked up by comparing known capability of a resource to its actual usage.
Abstract:
A computer implemented method, apparatus and computer usable program code for dynamically changing allocation policy in a host grid to support a local grid. The host grid is operated according to a set of allocation policies. The set of allocation policies corresponds to a predetermined resource allocation relationship between the host grid and a local grid. Based on the set of allocation policies, at least one resource on the host grid is allocated to the local grid. A monitoring agent is then used to monitor one of the local grid and both the local grid and the host grid for a change in a parameter. A change in the parameter may result in a change in the set of allocation policies.
Abstract:
A method, apparatus, and computer instructions for monitoring transactions for a set of known nodes in a network data processing system. Cache data is received from a router in the dada processing system. The cache data includes an identification of the set of known nodes sending data packets for transactions onto the network data processing system. The transactions are tracked for the set of nodes using the cache data from the router. In this manner, the loading of work for different nodes in a set of nodes can be identified.
Abstract:
A method, apparatus, and computer program product for monitoring the performance of a system. The mechanism of the present invention provides an interface in the form of a graphical user interface (GUI) to communicate multiple layers of system performance data to an operator. An operator monitors this display of infoiirrition and uses it to determine how to adjust the system to optimize system perfoiiuance. This mechanism of the present invention provides immediate feedback to an operator by displaying a trail of metric points, wherein the metric points indicate the status of system performance over a period of time. In this rrnnner, the display mechanism of the present invention immediately conveys to an operator whether the system is operating within predefined margins, the results of performance adjustments crude to the system, as well as predictions or trends for the system.
Abstract:
A corrective action method or subsystem for providing corrective actions in a computing domain shared among multiple customers wherein different domain resources are shared by different customers, and each customer's corrective action preferences are accommodated differently according a repository of customer preferences. A database may be queried when a fault event or out-of-limits condition is detected for a given shared resource to determine which customers share the resource, determine each affected customer's response preferences, and to perform corrective actions according to those response preferences.
Abstract:
A method, apparatus, and computer program product for monitoring the performance of a system. The mechanism of the present invention provides an interface in the form of a graphical user interface (GUI) to communicate multiple layers of system performance data to an operator. An operator monitors this display of infoiirrition and uses it to determine how to adjus t the system to optimize system perfoiiuance. This mechanism of the present invention provides immediate feedback to an operator by displaying a trail o f metric points, wherein the metric points indicate the status of system performance over a period of time. In this rrnnner, the display mechanism of the present invention immediately conveys to an operator whether the system is operating within predefined margins, the results of performance adjustments crude to the system, as well as predictions or trends for the system.
Abstract:
A monitoring program contains a method for detecting a load imbalance in a group of servers and providing notification so that corrections can be made. An embodiment of the invention reads from the address resolution protocol (ARP) cache to determine which server addresses are present, then clears the ARP cache. The address resolution protocol will repopulate the cache from traffic it snoops and from new requests. By performing this query and clear operation periodically, the tracking program can form a picture of the activity levels of the servers. When a significant imbalance exists, the program notifies a control console for human intervention to solve the problem. The tracking program will periodically write its results to a log file, allowing reports for various time periods to be produced as needed. By this mechanism, not only can an imbalance be quickly detected, but underutilization can be picked up by comparing known capability of a resource to its actual usage.
Abstract:
A monitoring program contains a method for detecting a load imbalance in a group of servers and providing notification so that corrections can be made. An embodiment of the invention reads from the address resolution protocol (ARP) cache to determine which server addresses are present, then clears the ARP cache. The address resolution protocol will repopulate the cache from traffic it snoops and from new requests. By performing this query and clear operation periodically, the tracking program can form a picture of the activity levels of the servers. When a significant imbalance exists, the program notifies a control console for human intervention to solve the problem. The tracking program will periodically write its results to a log file, allowing reports for various time periods to be produced as needed. By this mechanism, not only can an imbalance be quickly detected, but underutilization can be picked up by comparing known capability of a resource to its actual usage.