-
公开(公告)号:AT170997T
公开(公告)日:1998-09-15
申请号:AT90305306
申请日:1990-05-16
Applicant: IBM
Inventor: DINWIDDIE JOHN MONROE JR , GRICE LONNIE EDWARD , JOYCE JAMES MAURICE , LOFFREDO JOHN MARIO , SANDERSON KENNETH RUSSELL , BAKER ERNEST DYSART
Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.
-
公开(公告)号:SG45153A1
公开(公告)日:1998-01-16
申请号:SG1996000717
申请日:1990-05-16
Applicant: IBM
Inventor: BAKER ERNEST DYSART , DINWIDDIE JOHN MONROE JR , GRICE LONNIE EDWARD , JOYCE JAMES MAURICE , LOFFREDO JOHM MARIO , SANDERSON KENNETH RUSSELL
IPC: G06F15/16 , G06F9/46 , G06F11/00 , G06F11/16 , G06F11/20 , G06F12/02 , G06F13/368 , G06F15/177
Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.
-
公开(公告)号:AU628548B2
公开(公告)日:1992-09-17
申请号:AU5487090
申请日:1990-05-09
Applicant: IBM
Inventor: DINWIDDIE JOHN MONROE JR , GRICE LONNIE EDWARD , JOYCE JAMES MAURICE , LOFFREDO JOHN MARIO , SANDERSON KENNETH RUSSELL , BAKER ERNEST DYSART
IPC: G06F15/16 , G06F9/46 , G06F15/17 , G06F15/173 , G06F15/177
Abstract: The functions of two virtual opening systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.
-
公开(公告)号:SG43771A1
公开(公告)日:1997-11-14
申请号:SG1996000740
申请日:1990-05-16
Applicant: IBM
Inventor: BAKER ERNEST DYSART , DINWIDDIE JOHN MONROE JR , GRIVE LONNIE EDWARD , JOYCE JAMES MAURICE , LOFFREDO JOHN MARIO , SANDERSON KENNETH RUSSELL , SUAREZ GUSTAVO ARMANDO
IPC: G06F11/00 , G06F11/10 , G06F11/16 , G06F11/18 , G06F11/20 , G06F15/16 , G06F15/173 , G06F15/177 , G06F9/44
Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.
-
公开(公告)号:SG43767A1
公开(公告)日:1997-11-14
申请号:SG1996000716
申请日:1990-05-16
Applicant: IBM
-
公开(公告)号:CA2009550C
公开(公告)日:1995-08-08
申请号:CA2009550
申请日:1990-02-07
Applicant: IBM
Inventor: DINWIDDIE JOHN MONROE JR , FREEMAN BOBBY JOE , GRICE LONNIE EDWARD , LOFFREDO JOHN MARIO , SANDERSON KENNETH RUSSELL , SUAREZ GUSTAVO ARMANDO
IPC: G06F15/16 , G06F9/46 , G06F11/16 , G06F15/177 , H04L29/00
Abstract: The functions of two virtual operating systems (e.g., S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated from 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors access the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.
-
公开(公告)号:AU629336B2
公开(公告)日:1992-10-01
申请号:AU5487190
申请日:1990-05-09
Applicant: IBM
-
8.
公开(公告)号:HK1021662A1
公开(公告)日:2000-06-23
申请号:HK00100603
申请日:2000-02-01
Applicant: IBM
Inventor: BAKER ERNEST DYSART , DINWIDDIE JOHN MONROE JR , GRICE LONNIE EDWARD , JOYCE JAMES MAURICE , LOFFREDO JOHN MARIO , SANDERSON KENNETH RUSSELL
IPC: G06F15/16 , G06F9/46 , G06F11/00 , G06F11/16 , G06F11/20 , G06F12/02 , G06F13/368 , G06F15/177 , G06F
Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.
-
公开(公告)号:AT170644T
公开(公告)日:1998-09-15
申请号:AT90305312
申请日:1990-05-16
Applicant: IBM
Inventor: DINWIDDIE JOHN MONROE JR , GRICE LONNIE EDWARD , JOYCE JAMES MAURICE , LOFFREDO JOHN MARIO , SANDERSON KENNETH RUSSELL , BAKER ERNEST DYSART
IPC: G06F15/16 , G06F9/46 , G06F15/17 , G06F15/173 , G06F15/177
Abstract: The functions of two virtual opening systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.
-
10.
公开(公告)号:SG45151A1
公开(公告)日:1998-01-16
申请号:SG1996000711
申请日:1990-05-16
Applicant: IBM
Inventor: DINWIDDIE JOHN MONROE JR , GRICE LONNIE EDWARD , LOFFREDO JOHN MARIO , SANDERSON KENNETH RUSSELL , BAKER ERNEST DYSART , SUAREZ GUSTAVO ARMANDO
IPC: G06F9/46 , G06F9/50 , G06F11/16 , G06F12/02 , G06F13/18 , G06F15/16 , G06F15/167 , G06F15/177
Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors dirertly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.
-
-
-
-
-
-
-
-
-