Abstract:
A method for conversational computing includes executing code embodying a conversational virtual machine, registering a plurality of input/output resources with a conversational kernel, providing an interface between a plurality of active applications and the conversational kernel processing input/output data, receiving input queries and input events of a multi-modal dialog across a plurality of user interface modalities of the plurality of active applications, generating output messages and output events of the multi-modal dialog in connection with the plurality of active applications, managing, by the conversational kernel, a context stack associated with the plurality of active applications and the multi-modal dialog to transform the input queries into application calls for the plurality of active applications and convert the output messages into speech, wherein the context stack accumulates a context of each of the plurality of active applications.
Abstract:
A conversational computing system that provides a universal coordinated multi-modal conversational user interface (CUI) (10) across a plurality of conversationally aware applications (11) (i.e., applications that "speak" conversational protocols) and conventional applications (12). The conversationally aware applications (11) communicate with a conversational kernel (14) via conversational application APIs (13). The conversational kernel (14) controls the dialog across applications and devices (local and networked) on the basis of their registered conversational capabilities and requirements and provides a unified conversational user interface and conversational services and behaviors. The conversational computing system may be built on top of a conventional operating system and APIs (15) and conventional device hardware (16). The conversational kernel (14) handles all I/O processing and controls conversational engines (18). The conversational kernel (14) converts voice requests into queries and converts outputs and results into spoken messages using conversational engines (18) and conversational arguments (17). The conversational application API (13) conveys all the information for the conversational kernel (14) to transform queries into application calls and conversely convert output into speech, appropriately sorted before being provided to the user.
Abstract:
A conversational computing system that provides a universal coordinated mult i- modal conversational user interface (CUI) (10) across a plurality of conversationally aware applications (11) (i.e., applications that "speak" conversational protocols) and conventional applications (12). The conversationally aware applications (11) communicate with a conversational kernel (14) via conversational application API's (13). The conversational kernel (14) controls the dialog across applications and devices (local and networked) on the basis of their registered conversational capabilities and requirements and provides a unified conversational user interface and conversational services and behaviors. The conversational computing system m ay be built on top of a conventional operating system and API's (15) and conventional device hardware (16). The conversational kernel (14) handles al l I/O processing and controls conversational engines (18). The conversational kernel (14) converts voice requests into queries and converts outputs and results into spoken messages using conversational engines (18) and conversational arguments (17). The conversational application API (13) conve ys all the information for the conversational kernel (14) to transform queries into application calls and conversely convert output into speech, appropriately sorted before being provided to the user.
Abstract:
A speech recognition apparatus and method output a recognition signal corresponding to a command model having the best match score for a current sound if the best match score for the current sound is better than a recognition threshold score for the current sound. The recognition threshold comprises a first confidence score if the best match score for a prior sound was better than a recognition threshold for that prior sound. The recognition threshold comprises a second confidence score better than the first confidence score if the best match score for a prior sound was worse than the recognition threshold for that prior sound. In one embodiment, the recognition threshold for the current sound comprises the first confidence score (a1) if the match score for the prior sound and the acoustic silence model is better than a silence match threshold, and if the prior sound has a duration exceeding a silence duration threshold, or (a2) if the match score for the prior sound and the acoustic silence model is better than the silence match threshold, and if the prior sound has a duration less than the silence duration threshold, and if the best match score for the next prior sound and an acoustic command model was better than a recognition threshold for that next prior sound, or (a3) if the match score for the prior sound and the acoustic silence model is worse than the silence match threshold, and if the best match score for the prior sound and an acoustic command model was better than a recognition threshold for that prior sound. The recognition threshold for the current sound comprises the second confidence score better than the first confidence score (b1) if the match score for the prior sound and the acoustic silence model is better than the silence match threshold, and if the prior sound has a duration less than the silence duration threshold, and if the best match score for the next prior sound and an acoustic command model was worse than the recognition threshold for that next prior sound, or (b2) if the match score for the prior sound and the acoustic silence model is worse than the silence match threshold, and if the best match score for the prior sound and an acoustic command model was worse than the recognition threshold for that prior sound.
Abstract:
A conversational computing system that provides a universal coordinated multi-modal conversational user interface (CUI)(10) across a plurality of conversationally aware applications (11) (i.e., applications that "speak" conversational protocols) and conventional applications (12). The conversationally aware applications (11) communicate with a conversational kernel (14) via conversational application APIs (13). The conversational kernel (14) controls the dialog across applications and devices (local and networked) on the basis of their registered conversational capabilities and requirements and provides a unified conversational user interface and conversational services and behaviors. The conversational computing system may be built on top of a conventional operating system and APIs (15) and conventional device hardware (16). The conversational kernel (14) handles all I/O processing and controls conversational engines (18). The conversational kernel (14) converts voice requests into queries and converts outputs and results into spoken messages using conversational engines (18) and conversational arguments (17). The conversational application API (13) conveys all the information for the conversational kernel (14) to transform queries into application calls and conversely convert output into speech, appropriately sorted before being provided to the user.
Abstract:
A speech recognition apparatus and method output a recognition signal corresponding to a command model having the best match score for a current sound if the best match score for the current sound is better than a recognition threshold score for the current sound. The recognition threshold comprises a first confidence score if the best match score for a prior sound was better than a recognition threshold for that prior sound. The recognition threshold comprises a second confidence score better than the first confidence score if the best match score for a prior sound was worse than the recognition threshold for that prior sound. In one embodiment, the recognition threshold for the current sound comprises the first confidence score (a1) if the match score for the prior sound and the acoustic silence model is better than a silence match threshold, and if the prior sound has a duration exceeding a silence duration threshold, or (a2) if the match score for the prior sound and the acoustic silence model is better than the silence match threshold, and if the prior sound has a duration less than the silence duration threshold, and if the best match score for the next prior sound and an acoustic command model was better than a recognition threshold for that next prior sound, or (a3) if the match score for the prior sound and the acoustic silence model is worse than the silence match threshold, and if the best match score for the prior sound and an acoustic command model was better than a recognition threshold for that prior sound. The recognition threshold for the current sound comprises the second confidence score better than the first confidence score (b1) if the match score for the prior sound and the acoustic silence model is better than the silence match threshold, and if the prior sound has a duration less than the silence duration threshold, and if the best match score for the next prior sound and an acoustic command model was worse than the recognition threshold for that next prior sound, or (b2) if the match score for the prior sound and the acoustic silence model is worse than the silence match threshold, and if the best match score for the prior sound and an acoustic command model was worse than the recognition threshold for that prior sound.