Abstract:
The invention discloses an Ultrafast Electro-Dynamic X, Y and Theta Positioning Stage. A positioning stage made according to this invention allows light payloads to be moved with extremely high linear and angular accelerations over finite distances and angles within a plane. An important feature of this invention is a momentum-cancelling design which allows reaction forces and torques on the fixed member to approach zero, thereby, allowing for a smooth and an ultrafast performance by the positioning stage.
Abstract:
Selective compliance in up to six degrees of freedom in a magnetically levitated fine motion device, or robot wrist, with limited motion in X,Y,Z, ROLL, PITCH, YAW, is provided by controlled actuation currents applied to six electrodynamic forcer elements. The wrist has a stator support base defining a dual periphery, carrying a number of stator magnet units. A shell flotor unit nests within the stator support base dual periphery, and carries forcer coils at locations corresponding to respective magnet units. The magnet unit and related flotor coil form a forcer element. There are a number of forcer elements. The vector sum of all the translational forces and rotational torques established at the forcer elements determines the X,Y,Z, ROLL, PITCH, and YAW motion of the flotor. The flotor carries an end effector which may be a tool. Position and orientation of the flotor is monitored by light emitting diodes and lateral effect cells. Coil currents are controlled as a composite of present position, desired final position, and desired compliance. As the fine motion device approaches its final position, the control unit changes forcer coil current patterns at various sets of forcer elements, to provide selected compliance in one or more degrees of freedom while approaching and finally while maintaining the desired position. Cooling is provided as needed; docking ant locking provision is made to allow de-energizing the coils for cooling, motion of the base, or shutdown. YO98078
Abstract:
Y0985-062 CONTROLLED PIN INSERTION USING AIRFLOW SENSING AND ACTIVE FEEDBACK An automatic assembly apparatus or robot holds a pin in an instrumented gripper, moves open loop to the "detection region" in which airflow forces, primarily lateral forces, in the vicinity of the hole may be dependably sensed. Relatively large lateral airflow forces in the detection region are sensed and the pin is moved toward the hole. The airflow forces exhibit an abrupt force change as the pin reaches the insertion point within the "capture region" of the hole defined by the mechanical chamfer or significantly extended as a result of the virtual chamfer of airflow through the hole. The insertion point is the point where lateral X,Y force vectors balance to a null, where Z force readings change from complex X,Y,Z force vectors to simple Z force vectors. The controller commands an open loop move to place the pin within the detection region; then commands a closed loop move, using a skirt around the pin or the pin itself as a probe, and sampling the force vectors until the insertion point is detected; then commands a move in the Z direction to put the pin into the hole. Insertion success or failure is detected by sampling the Z force vectors for blockage by the plate, or by sampling pressure as the pin plugs the hole. Retry routines follow detection of any insertion failure.