1.
    发明专利
    未知

    公开(公告)号:AT221999T

    公开(公告)日:2002-08-15

    申请号:AT94119895

    申请日:1994-12-16

    Applicant: IBM

    Abstract: A magnetoresistive read sensor incorporates a multilayer sensing element formed of one or more magnetoresistive elements in a planar array, each magnetoresistive element having a multilayer structure of at least two ferromagnetic layers separated by a nonmagnetic layer. The ferromagnetic layers are coupled antiferromagnetically by magnetostatic coupling at opposing edges of the ferromagnetic layers. A bias layer separated from the magnetoresistive sensing element by a spacer layer provides a magnetic field to bias the magnetoresistive sensing element at a desired non-signal point for linear response. The magnetoresistive sensing element is formed by alternatively depositing layers of ferromagnetic material and layers of nonmagnetic material on a substrate and then patterning the resulting structure using photolithographic techniques to provide a planar array of magnetoresistive elements. A conductive layer is deposited over the array filling in the spaces separating the magnetoresistive elements to provide electrical conductivity between the elements in the plane of the structure.

    Multilayer magnetoresistive sensor

    公开(公告)号:SG42849A1

    公开(公告)日:1997-10-17

    申请号:SG1996000132

    申请日:1994-12-16

    Applicant: IBM

    Abstract: A magnetoresistive read sensor incorporates a multilayer sensing element formed of one or more magnetoresistive elements in a planar array, each magnetoresistive element having a multilayer structure of at least two ferromagnetic layers separated by a nonmagnetic layer. The ferromagnetic layers are coupled antiferromagnetically by magnetostatic coupling at opposing edges of the ferromagnetic layers. A bias layer separated from the magnetoresistive sensing element by a spacer layer provides a magnetic field to bias the magnetoresistive sensing element at a desired non-signal point for linear response. The magnetoresistive sensing element is formed by alternatively depositing layers of ferromagnetic material and layers of nonmagnetic material on a substrate and then patterning the resulting structure using photolithographic techniques to provide a planar array of magnetoresistive elements. A conductive layer is deposited over the array filling in the spaces separating the magnetoresistive elements to provide electrical conductivity between the elements in the plane of the structure.

    Thin film magnetic recording medium

    公开(公告)号:GB2278369B

    公开(公告)日:1997-01-15

    申请号:GB9410519

    申请日:1994-05-25

    Applicant: IBM

    Abstract: A high-density recording media comprising longitudinally oriented polycrystalline barium ferrite exhibits large coercivity, corrosion resistance, high hardness and durability. Films are prepared by on-axis sputtering at ambient temperatures from stoichiometric targets followed by a post-deposition anneal at approximately 850 DEG C. to induce crystallization. Crystallization yields a magnetic film with large in-plane remanence and a fine scale texturing that greatly improves the tribological performance of barium ferrite disks. Exceptional durability can be achieved on disks without overcoats. Grain sizes as small as 200 ANGSTROM are produced by doping with small amounts of Cr2O3 or other additives. Coercivities greater than 4000 Oe are achieved even in small grain films.

    Magnetoresistive film method of its fabrication and magnetoresistive sensor

    公开(公告)号:SG49605A1

    公开(公告)日:1998-06-15

    申请号:SG1996000761

    申请日:1994-06-08

    Applicant: IBM

    Abstract: A heterogeneous thin film structure (10) including a discontinuous layer (15) of ferromagnetic material deposited on an insulating substrate (13) and overcoated with a layer (17) of nonmagnetic electrically conductive material exhibits giant magnetoresistance in saturation fields on the order of 350 Oersteds. A layer of ferromagnetic material is deposited on a heated insulating substrate by evaporation techniques to form a layer of isolated ferromagnetic particles and overcoated with a nonmagnetic conductive material to form a plurality of ferromagnetic particles embedded in a nonmagnetic conductive matrix. As the ferromagnetic and nonmagnetic materials are deposited separately, it is not required that the two materials be immiscible and subsequent annealing is not required to induce phase separation.

    7.
    发明专利
    未知

    公开(公告)号:DE69431149T2

    公开(公告)日:2003-05-28

    申请号:DE69431149

    申请日:1994-12-16

    Applicant: IBM

    Abstract: A magnetoresistive read sensor incorporates a multilayer sensing element formed of one or more magnetoresistive elements in a planar array, each magnetoresistive element having a multilayer structure of at least two ferromagnetic layers separated by a nonmagnetic layer. The ferromagnetic layers are coupled antiferromagnetically by magnetostatic coupling at opposing edges of the ferromagnetic layers. A bias layer separated from the magnetoresistive sensing element by a spacer layer provides a magnetic field to bias the magnetoresistive sensing element at a desired non-signal point for linear response. The magnetoresistive sensing element is formed by alternatively depositing layers of ferromagnetic material and layers of nonmagnetic material on a substrate and then patterning the resulting structure using photolithographic techniques to provide a planar array of magnetoresistive elements. A conductive layer is deposited over the array filling in the spaces separating the magnetoresistive elements to provide electrical conductivity between the elements in the plane of the structure.

    8.
    发明专利
    未知

    公开(公告)号:DE69431149D1

    公开(公告)日:2002-09-12

    申请号:DE69431149

    申请日:1994-12-16

    Applicant: IBM

    Abstract: A magnetoresistive read sensor incorporates a multilayer sensing element formed of one or more magnetoresistive elements in a planar array, each magnetoresistive element having a multilayer structure of at least two ferromagnetic layers separated by a nonmagnetic layer. The ferromagnetic layers are coupled antiferromagnetically by magnetostatic coupling at opposing edges of the ferromagnetic layers. A bias layer separated from the magnetoresistive sensing element by a spacer layer provides a magnetic field to bias the magnetoresistive sensing element at a desired non-signal point for linear response. The magnetoresistive sensing element is formed by alternatively depositing layers of ferromagnetic material and layers of nonmagnetic material on a substrate and then patterning the resulting structure using photolithographic techniques to provide a planar array of magnetoresistive elements. A conductive layer is deposited over the array filling in the spaces separating the magnetoresistive elements to provide electrical conductivity between the elements in the plane of the structure.

    9.
    发明专利
    未知

    公开(公告)号:DE69419202T2

    公开(公告)日:2000-01-20

    申请号:DE69419202

    申请日:1994-04-07

    Applicant: IBM

    Abstract: A magnetoresistive read sensor incorporates a granular multilayer sensing element comprising a plurality of layers of generally flat particles of a ferromagnetic material embedded in a nonmagnetic electrically conductive material. A bias layer separated from the magnetoresistive sensing element by a spacer layer provides a magnetic field to bias the magnetoresistive sensing element at a desired non-signal point. The ferromagnetic and the nonmagnetic materials are mutually immiscible, or may be miscible or partially miscible and processed in a manner to control interdiffusion. The magnetoresistive sensing element is formed by alternatively depositing layers of ferromagnetic material and layers of nonmagnetic conductive material on a substrate and then annealing the structure. During the annealing cycle, the layers of nonmagnetic material above and below the ferromagnetic layers penetrate at grain boundaries and break the continuity of the ferromagnetic layers to form layers or planes of ferromagnetic particles embedded in a matrix of nonmagnetic material.

    10.
    发明专利
    未知

    公开(公告)号:DE69419202D1

    公开(公告)日:1999-07-29

    申请号:DE69419202

    申请日:1994-04-07

    Applicant: IBM

    Abstract: A magnetoresistive read sensor incorporates a granular multilayer sensing element comprising a plurality of layers of generally flat particles of a ferromagnetic material embedded in a nonmagnetic electrically conductive material. A bias layer separated from the magnetoresistive sensing element by a spacer layer provides a magnetic field to bias the magnetoresistive sensing element at a desired non-signal point. The ferromagnetic and the nonmagnetic materials are mutually immiscible, or may be miscible or partially miscible and processed in a manner to control interdiffusion. The magnetoresistive sensing element is formed by alternatively depositing layers of ferromagnetic material and layers of nonmagnetic conductive material on a substrate and then annealing the structure. During the annealing cycle, the layers of nonmagnetic material above and below the ferromagnetic layers penetrate at grain boundaries and break the continuity of the ferromagnetic layers to form layers or planes of ferromagnetic particles embedded in a matrix of nonmagnetic material.

Patent Agency Ranking