Abstract:
A method for protecting redundancy of data recorded through multiple layers of a recording medium is provided to reduce a danger of inaccessibility or a loss of the data when the data on at least one layer is not decoded and to improve creditability of the recording medium and stability of the recorded data. A method for protecting redundancy of data recorded through multiple layers of a recording medium includes a step of receiving a data stream, a step of encoding each data bit to the predetermined number of expression bits, a step of recording a first expression bit at a first layer, recording a second expression bit at a second layer, and recording a remaining expression bit at the other layers of the recording medium, a step of receiving a request for decoding the data recorded from the recording medium, a step of reading back the plural expression bits from the recording medium, and a step of decoding the plural expression bits to an original data bit.
Abstract:
An apparatus, system, and method are disclosed for implementing protected partitions in storage media. The apparatus includes a control module configured to communicate with a host and receive read/write commands for a storage device, and a protection module operating within the control module and configured to maintain a plurality of protection states for the partition and a plurality of allowable transitions between the protection states. The system includes the apparatus, a host device, and a storage device coupled with the host, the storage device including an enclosure having storage media and a control module. The method includes communicating with a host device and receiving read and write commands for a storage device having at least one partition, and maintaining a plurality of protection states for the partition and a plurality of allowable transitions between the protection states on a control module located within the storage device.
Abstract:
PROBLEM TO BE SOLVED: To provide a medium, system, and method for common data storage medium depression depth. SOLUTION: An optical data storage medium comprises a plurality of spacer layers and data surfaces. A wavelength for a radiation beam such as the emission of a laser diode is identified. The index of refraction for a first spacer layer or substrate is also identified. The substrate is configured to transmit the radiation beam. The index of refraction of a second spacer layer configured to transmit the radiation beam is also identified. A depression depth for a plurality of pits for ROM media, or sector headers for recordable media, or grooves for recordable media on each data surface is substantially equal to the radiation beam wavelength divided by four times the average of the indexes of refraction of each spacer layer. In one embodiment, the average is an arithmetic mean of the indexes of refraction. In an alternate embodiment, the average is a harmonic mean of the indexes of refraction. The average may also be a geometric mean of indexes of refraction. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
A method to allocate resources in a data storage library comprising a plurality of data storage devices configured as a RAID array, by establishing a normal operation resource allocation, a RAID failure resource allocation, and a multiple storage device failure resource allocation. The method receives host I/O requests, and enqueues those host I/O requests. If the system is operating without any storage device failures, then the method processes host I/O requests using the normal operation resource allocation. If the system is operating with a storage device failure, then the method processes host I/O requests using the RAID failure resource allocation. If the system is operating with multiple storage device failures, then the method processes host I/O requests using the multiple storage device failure resource allocation.
Abstract:
An apparatus and method are disclosed to generate convolution encoded data. The method supplies a convolution encoder. The method receives original data and generates convolution encoded original data. The method receives revised data. The method generates an XOR data stream by Exclusive OR'ing the original data with the revised data, forms a convolution encoded XOR data stream using the convolution encoder, and Exclusive ORs the convolution encoded XOR data stream with the convolution encoded original data to generate convolution-encoded revised data.
Abstract:
A method to select a deduplication protocol for a data storage library comprising a plurality of data storage devices configured as a RAID array, establishes a normal deduplication protocol, a RAID failure deduplication protocol, and a multiple storage device failure deduplication protocol. The method receives host data comprising a plurality of interleaved data blocks. If the system is operating without any storage device failures, then the method processes the host data using the normal deduplication protocol. If the system is operating with a storage device failure, then the method processes the host data using the RAID failure deduplication protocol. If the system is operating with multiple storage device failures, then the method processes the host data using the multiple storage device failure deduplication protocol.
Abstract:
A medium, system, and method are disclosed for a common data storage medium depression depth. An optical data storage medium comprises a plurality of spacer layers and data surfaces. A wavelength for a radiation beam such as the emission of a laser diode is identified. The index of refraction for a first spacer layer or substrate is also identified. The substrate is configured to transmit the radiation beam. The index of refraction of a second spacer layer that is configured to transmit the radiation beam is also identified. A depression depth for a plurality of pits for ROM media, or sector headers for recordable media, or grooves for recordable media on each data surface is substantially equal to the radiation beam wavelength divided by four times the average of the indexes of refraction of each spacer layer. In one embodiment, the average is an arithmetic mean of the indexes of refraction. In an alternate embodiment, the average is a harmonic mean of the indexes of refraction. The average may also be a geometric mean of indexes of refraction.
Abstract:
Data for storage by holographic data storage is arranged in an intermedia te data storage as data segments which are replicas of holographic storage s egments. Files of data are aggregated into the data segments, and a destagin g control determines the destaging of the data segments to the holographic d ata storage in accordance with a plurality of policies, such as whether a se gment is full, a time threshold has been reached, or whether a threshold num ber of segments are "open". The intermediate data storage may be arranged in to a number of partitions at least equal to the number of sources having inp ut to the data destaging system, the partitions comprising integral multiple s of the data segments.
Abstract:
A medium, system, and method are disclosed for a common data storage medium depression depth. An optical data storage medium comprises a plurality of spacer layers and data surfaces. A wavelength for a radiation beam such as the emission of a laser diode is identified. The index of refraction for a first spacer layer or substrate is also identified. The substrate is configured to transmit the radiation beam. The index of refraction of a second spacer layer that is configured to transmit the radiation beam is also identified. A depression depth for a plurality of pits for ROM media, or sector headers for recordable media, or grooves for recordable media on each data surface is substantially equal to the radiation beam wavelength divided by four times the average of the indexes of refraction of each spacer layer. In one embodiment, the average is an arithmetic mean of the indexes of refraction. In an alternate embodiment, the average is a harmonic mean of the indexes of refraction. The average may also be a geometric mean of indexes of refraction.