Abstract:
AN ADAPTIVE PATTERN RECOGNITION SYSTEM IS PROVIDED WHICH CALCULATES THE MUTUAL INFORMATION PROVIDED BY PAIRS OF FEATURES EXTRACTED BY A FEATURE EXTRACTING DEVICE. THE RELATIVE MAGNITUDES OF MUTUAL INFORMATION ARE DETECTED SERIATIM AND A CLOSED LOOP AVOIDANCE MODULE PREVENTS FORMING A CLOSED LOOP, TO RETAIN A STATISTICAL TREE RELATIONSHIP. PATTERN LOGIC STORES THE SET OF PAIRS HAVING HIGHEST VALUES OF MUTUAL INFORMATION. THEN THE SYSTEM IS PREPARED TO OPERATE A RECOGNITION SYSTEM. THE INDIVIDUAL FEATURES ARE WEIGHTED, ACCORDING TO STATISTICAL ANALYSIS, BY ANALOGUE COMPUTERS. ALSO, THE PAIRS OF INFORMATION ARE GATED AND WEIGHTED FOR EACH PATTERN IN ACCORDANCE WITH STATISTICAL WEIGHTING PRINCIPLES. THE SUMMING NETWORK FOR A PLURALITY OF PATTERNS ARE COMPARED IN A MAXIMUM DETECTOR FOR ULTIMATE RECOGNITION OF THE MOST LIKELY PATTERN IDENTIFICATION.
Abstract:
A relational data base system utilizing magnetic bubble domain storage. The bubble domain storage is located on a magnetic chip and includes storage circuitry for storing bubble domains in columns and rows. The bubble domains are coded to represent data, and the rows and columns of bubbles correspond to tables of data which are determined by various relations. Current activated transfer gates located on the magnetic chip are used to select a particular row or a particular column of bubble domains for accessing. The magnetic chip also includes a write circuit for writing bubble domains into storage and a read circuit for reading bubble domains removed from storage. Located off the magnetic chip are column addressing circuits, row addressing circuits, interface circuitry, and a computer central processing unit. The interface circuitry is located between the central processing unit and the bubble domain storage chip, while the column and row addressing circuits provide inputs to a transfer control circuit that is used to activate selected current carrying lines when it is determined to access a particular row or column of bubbles in storage. New information can be entered into any of the stored tables of bubble domains, and information can be removed from any of the stored tables. Also, new tables of information can be provided in storage by combining selected rows or columns of tables already in storage.
Abstract:
Method and apparatus are disclosed for verifying a sample signature based on comparison of the dynamics of a reference and a sample signature. More particularly, second derivative values of pen displacements (i.e. acceleration) and continuous pressure pattern signals are periodically sampled for both a reference and sample signature and a comparison of these second derivative values and pressure patterns is made. To effect the comparisons the two groups (reference and sample) of both second derivative and pressure pattern signals are segmented and corresponding segments are individually correlated. Successive comparisons of the same segment pairs are performed utilizing successive shifting of the phases between the two segments being correlated to find regions of highest possible correlation. A running account of the maximum cross correlation values for all of the segment pairs of the two signatures are kept. Finally, these maximum values obtained for each segment pair comparison are combined and this resultant correlation value is utilized as a verification indicator.
Abstract:
A pressure sensing device having applicability as a simple pressure sensor and which is particularly adapted for use as a pen in a Signature Verification System, said device including n unique mounting structure for the pressure sensing stylus by flexible support means mounted on a substantially rigid base. She support means has a pressure sensing element mounted thereon. She flexible support means comprises two spaced members so disposed that their deflections and the output of the pressure sensing element are substantially independent of the angle of pressure on the stylus. In the special purpose embodiment useful for Signature Verification the stylus comprises a pen and the device further includes two orthogonally disposed accelerometers for sensing accelerations of said pen during the writing of a signature.
Abstract:
Method and apparatus are disclosed for verifying a sample signature based on comparison of the dynamics of a reference and a sample signature. More particularly, second derivative values of pen displacements (i.e. acceleration) and continuous pressure pattern signals are periodically sampled for both a reference and sample signature and a comparison of these second derivative values and pressure patterns is made. To effect the comparisons the two groups (reference and sample) of both second derivative and pressure pattern signals are segmented and corresponding segments are individually correlated. Successive comparisons of the same segment pairs are performed utilizing successive shifting of the phases between the two segments being correlated to find regions of highest possible correlation. A running account of the maximum cross correlation values for all of the segment pairs of the two signatures are kept. Finally, these maximum values obtained for each segment pair comparison are combined and this resultant correlation value is utilized as a verification indicator.
Abstract:
SIGNATURE VERIFICATION METHOD AND APPARATUS UTILIZING BOTH ACCELERATION AND PRESSURE CHARACTERISTICS of the Invention Method and apparatus are disclosed for verifying a sample signature based on comparison of the dynamics of a reference and a sample signature. More particularly, second derivative values of pen displacements (i.e. acceleration) and continuous pressure pattern signals are periodically sampled for both a reference and sample signature and a comparison of these second derivative values and pressure patterns is made. To effect the comparisons the two groups (reference and sample) of both second derivative and pressure pattern signals are segmented and corresponding segments are individually correlated. Successive comparisons of the same segment pairs are performed utilizing successive shifting of the phases between the two segments being correlated to find regions of highest possible correlation. A running account of the maximum cross correlation values for all of the segment pairs of the two signatures are kept. Finally, these maximum values obtained for each segment pair comparison are combined and this resultant correlation value is utilized as a verification indicator.
Abstract:
A pressure sensing device having applicability as a simple pressure sensor and which is particularly adapted for use as a pen in a Signature Verification System, said device including a unique mounting structure for the pressure sensing stylus by flexible support means mounted on a substantially rigid base. The support means has a pressure sensing element mounted thereon. The flexible support means comprises two spaced members so disposed that their deflections and the output of the pressure sensing element are substantially independent of the angle of pressure on the stylus. In the special purpose embodiment useful for Signature Verification the stylus comprises a pen and the device further includes two orthogonally disposed accelerometers for sensing accelerations of said pen during the writing of a signature.