Abstract:
A method of automating the process of creating a remote mirror of a relational database management system (RDMBS) includes discovering storage configuration and database layout at a primary database, relaying this information to a backup storage subsystem, monitoring that database and storage systems for changes and conveying storage and/or database changes to the backup storage subsystem. A self-configuring backup mirroring system for dynamic relational configuration includes a source system monitoring one or more storage servers and a computer system running a RDBMS. A backup system provides a disaster recovery environment for the source system wherein backup storage components duplicate the source storage components. The backup system may be used to reconstruct the source storage system if necessary. Finally, software agents run at both the source and backup systems.
Abstract:
Provided are a method, system, and article of manufacture in which a first storage unit at a first site is coupled to a second storage unit at a second site and a third storage unit at a third site. Data is received at the first storage unit. The received data is divided into a first part and a second part. The first part of the data is stored in the first storage unit at the first site. The second part of the data is distributed to the second storage unit at the second site for storage. Parity data corresponding to the first part of the data and the second part of the data is computed. The parity data is distributed to the third storage unit at the third site for storage. Additionally, provided also are a method, system, and article of manufacture in which data is received at the first storage unit. A first information unit, a second information unit, and a third information unit are generated, wherein the first information unit, the second information unit, and the third information unit each include a portion of the received data and computed parity data. The first information unit is stored in the first storage unit at the first site. The second information unit is distributed to the second storage unit at the second site for storage. The third information unit is distributed to the third storage unit at the third site for storage.
Abstract:
Provided are a system, and article of manufacture in which data is received at the first storage unit. A first information unit, a second information unit, and a third information unit are generated, wherein the first information unit, the second information unit, and the third information unit each include a portion of the received data and computed parity data. The first information unit is stored in the first storage unit at the first site. The second information unit is distributed to the second storage unit at the second site for storage. The third information unit is distributed to the third storage unit at the third site for storage.
Abstract:
Provided are a method, system, and article of manufacture in which a first storage unit at a first site is coupled to a second storage unit at a second site and a third storage unit at a third site. Data is received at the first storage unit. The received data is divided into a first part and a second part. The first part of the data is stored in the first storage unit at the first site. The second part of the data is distributed to the second storage unit at the second site for storage. Parity data corresponding to the first part of the data and the second part of the data is computed. The parity data is distributed to the third storage unit at the third site for storage. Additionally, provided also are a method, system, and article of manufacture in which data is received at the first storage unit. A first information unit, a second information unit, and a third information unit are generated, wherein the first information unit, the second information unit, and the third information unit each include a portion of the received data and computed parity data. The first information unit is stored in the first storage unit at the first site. The second information unit is distributed to the second storage unit at the second site for storage. The third information unit is distributed to the third storage unit at the third site for storage.
Abstract:
Provided are a method, system, and article of manufacture for performing backup operations for a volume group of volumes. Information on a volume group associating a plurality of volumes and backup settings is maintained. A volume group is selected to which the backup settings apply. A volume group associates hosts and volumes, indicating the hosts that are enabled to access the volumes in the volume group. Automatic backup operations for the selected volume group are invoked to generate backup information for the volume group indicating backups performed with respect to the volumes associated with the volume group, process the backup information for the volume group to determine whether to perform a backup with respect to the volume group according to the backup settings, and backup each volume in the volume group in response to determining to perform the backup operation for the volume group.
Abstract:
A method of automating the process of creating a remote mirror of a relation al database management system (RDMBS) includes discovering storage configuratio n and database layout at a primary database, relaying this information to a backup storage subsystem, monitoring that database and storage systems for changes and conveying storage and/or database changes to the backup storage subsystem. A self-configuring backup mirroring system for dynamic relational configuration includes a source system monitoring one or more storage server s and a computer system running a RDBMS. A backup system provides a disaster recovery environment for the source system wherein backup storage components duplicate the source storage components. The backup system may be used to reconstruct the source storage system if necessary. Finally, software agents run at both the source and backup systems.