Abstract:
In an embodiment, a network adapter has a physical port that is multiplexed to multiple logical ports, which have default queues. The adapter also has other queues, which can be allocated to any logical port, and resources, which map tuples to queues. The tuples are derived from data in packets received via the physical port. The adapter determines which queue should receive a packet based on the received tuple and the resources. If the received tuple matches a resource, then the adapter stores the packet to the corresponding queue; otherwise, the adapter stores the packet to the default queue for the logical port specified by the packet. In response to receiving an allocation request from a requesting partition, if no resources are idle, a resource is selected for preemption that is already allocated to a selected partition. The selected resource is then allocated to the requesting partition.
Abstract:
PROBLEM TO BE SOLVED: To virtualize a host USB adapter in vertualized environment maintained by a hypervisor. SOLUTION: The hypervisor administers one or more logical partitions wherein virtualizing is receiving a USB Input/Output (I/O) request from a logical partition via a logical USB adapter by the hypervisor. The logical USB adapter includes: a step of receiving a request that is associated with the USB adapter coupled to a host USB; a step of placing a work queue element (WQE) in a queue of a queue pair associated with the logical USB adapter by the hypervisor; and a step of administering USB data communications among the local partition and the USB device including retrieving using direct memory access (DMA) USB data originating at the USB device from the host USB adapter into a dedicated memory region for the logical USB adapter by an interface device based on the WQE. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
In an embodiment, a network adapter has a physical port that is multiplexed to multiple logical ports, which have default queues. The adapter also has other queues, which can be allocated to any logical port, and resources, which map tuples to queues. The tuples are derived from data in packets received via the physical port. The adapter determines which queue should receive a packet based on the received tuple and the resources. If the received tuple matches a resource, then the adapter stores the packet to the corresponding queue; otherwise, the adapter stores the packet to the default queue for the logical port specified by the packet. In response to receiving an allocation request from a requesting partition, if no resources are idle, a resource is selected for preemption that is already allocated to a selected partition. The selected resource is then allocated to the requesting partition.
Abstract:
In an embodiment, a network adapter has a physical port that is multiplexed to multiple logical ports, which have default queues. The adapter also has other queues, which can be allocated to any logical port, and resources, which map tuples to queues. The tuples are derived from data in packets received via the physical port. The adapter determines which queue should receive a packet based on the received tuple and the resources. If the received tuple matches a resource, then the adapter stores the packet to the corresponding queue; otherwise, the adapter stores the packet to the default queue for the logical port specified by the packet. In response to receiving an allocation request from a requesting partition, if no resources are idle, a resource is selected for preemption that is already allocated to a selected partition. The selected resource is then allocated to the requesting partition.