Abstract:
Methods and systems for aggregating search query results include receiving (202) search query results and schema information for the query results from multiple heterogeneous sources (102), determining types (116) for elements of the query results based on the schema information, determining potential aggregations (204) for the query results based on the types, which are based on accumulated information from the plurality of heterogeneous resources (102), and aggregating (220) the query results according to one or more of the potential aggregations.
Abstract:
Methods and systems for determining schema element types are shown that include pooling (208) potential annotations for an element of an unlabeled schema from a plurality of heterogeneous sources, scoring (404) the pool of potential annotations according to relevancy using instance information from the plurality of heterogeneous sources to produce a relevancy score, and annotating (406) the element of the unlabeled schema using the most relevant potential annotations.
Abstract:
A multinode, multicast communications network has a distributed control for the creation, administration and operational mode selection operative in each of the nodes of the network. Each node is provided with a Set Manager for controlling either creation of, administration or access to a set of users to whom a multicast is to be directed. The Set Manager maintains a record of the local membership of all users associated with the node in which the Set Manager resides. A given Set Manager for each designated set of users is assigned the task of being the Set Leader to maintain membership information about the entire set of users in the multicast group. One of the Set Managers in the communications network is designated to be the Registrar which maintains a list of all the Set Leaders in the network. The Registrar insures that there is one and only one Set Leader for each set of users, answers inquiries about the membership of the sets and directs inquiries to appropriate Set Leaders if necessary. All of the set creation, administration and control functions can therefore be carried out by any node of the system and provision is made to assume the function at a new node when failure or partition in the network occurs.
Abstract:
In a multicast network communication system, administration of the communication path making up the multicast tree itself has been separated from control and administration of the network. Creation of a multicast distribution tree and control over the membership thereof, is separately controlled independently from the creation and use of the tree transmission path used to communicate among the members of a multicast set. Transmission distribution trees are set up when a transmission request is received and the properties of the transmission path that is required are known. Transmission paths are created and controlled by all nodes in the communications system, each node having necessary control code and processors for responding to requests from set members to transmit a message to groups of users by creating and activating the necessary tree communication path distribution linkages. A distribution tree is created by the Tree Leader by generating a tree address using a random number generator. A tree address correlator is generated utilizing network and node identifiers unique for the network, and a list of subnodes or users connected for each member of the multicast tree set is generated. Using this information, a tree distribution path is computed to cover all of the subnodes required and a tree set up request message is sent by the Tree Leader along a computed path to each involved subnode. Each subnode returns a message indicating whether the tree address is already in use or is available for use. Successfully negotiated tree addresses are marked at the path link initiation and termination points at each node through the network.