Abstract:
An electronic tool for copying a plurality of settings from a first mechanical tool to a second mechanical tool comprises: a smart device having a processor, and having a non-transitory memory storing program instructions executable on the processor. The program instructions are configured, when executed on the processor, to: read the plurality of settings from the first mechanical tool; and write the plurality of settings to the second mechanical tool.
Abstract:
Illustrative embodiments of impact tools with impact mechanisms rigidly coupled to electric motors are disclosed. In at least one illustrative embodiment, an impact tool may comprise an impact mechanism, an electric motor, and a control circuit. The impact mechanism may comprise a hammer and an anvil, the hammer being configured to rotate about a first axis and to periodically impact the anvil to drive rotation of the anvil about the first axis. The electric motor may comprise a rotor that is rigidly coupled to the impact mechanism, the electric motor being configured to drive rotation of the hammer about the first axis. The control circuit may be configured to supply a current to the electric motor and to prevent the current from exceeding a threshold in response to the hammer impacting the anvil.
Abstract:
An electronic tool for copying a plurality of settings from a first mechanical tool to a second mechanical tool comprises: a smart device having a processor, and having a non-transitory memory storing program instructions executable on the processor. The program instructions are configured, when executed on the processor, to: read the plurality of settings from the first mechanical tool; and write the plurality of settings to the second mechanical tool.
Abstract:
A computer may display on a graphical user interface (GUI) a component library including a set of components relating to a compressed air system. The GUI may have a modeling interface for configuring a virtual model using the set of components. The computer may simulate the virtual model to determine one or more optimizations to the compressed air system. The computer may also determine the cost of implementing the compressor system optimization.
Abstract:
A computer may display on a graphical user interface (GUI) a component library including a set of components relating to a compressed air system. The GUI may have a modeling interface for configuring a virtual model using the set of components. The computer may simulate the virtual model to determine one or more optimizations to the compressed air system. The computer may also determine the cost of implementing the compressor system optimization.
Abstract:
A computer may display on a graphical user interface (GUI) a component library including a set of components relating to a compressed air system. The GUI may have a modeling interface for configuring a virtual model using the set of components. The computer may simulate the virtual model to determine one or more optimizations to the compressed air system. The computer may also determine the cost of implementing the compressor system optimization.
Abstract:
A computer may display on a graphical user interface (GUI) a component library including a set of components relating to a compressed air system. The GUI may have a modeling interface for configuring a virtual model using the set of components. The computer may simulate the virtual model to determine one or more optimizations to the compressed air system. The computer may also determine the cost of implementing the compressor system optimization.
Abstract:
A computer may display on a graphical user interface (GUI) a component library including a set of components relating to a compressed air system. The GUI may have a modeling interface for configuring a virtual model using the set of components. The computer may simulate the virtual model to determine one or more optimizations to the compressed air system. The computer may also determine the cost of implementing the compressor system optimization.