Abstract:
Provided is a method of controlling release of nitrogen monoxide, and more particularly, a method of selectively releasing nitrogen monoxide using mesoporous silica nanoparticles including a material capable of emitting protons by light irradiation and calcium phosphate. The technique according to the present invention to control release of nitrogen monoxide by light irradiation may stably deliver nitrogen monoxide to a desired part, and induces release of nitrogen monoxide only when irradiated with light, thereby maximizing a therapeutic effect.
Abstract:
The method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT) are provided. The method includes intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The system includes a power amplification device capable of minimizing the effect of envelope impedance. The power amplification device may be incorporated in a terminal and a base station.
Abstract:
A donor capable of controlled release of nitric monoxide and a prosthetic implant whose surface is coated with this donor are disclosed. The donor comprises a main chain of an organic polymer and a side chain that is covalently linked to the main chain and has a diazeniumdiolate functional group. The donor for controlled release of nitric monoxide exists in a fluid state such as liquid at room temperature and undergoes a sol-to-gel phase transition at a physiological pH as the temperature increases above the critical temperature. The critical temperature of the phase transition is in the range of 25 to 35°C, and the gel is a hydrogel without chemical cross-links.
Abstract:
A donor capable of controlled release of nitric monoxide and a prosthetic implant whose surface is coated with this donor are disclosed. The donor comprises a main chain of an organic polymer and a side chain that is covalently linked to the main chain and has a diazeniumdiolate functional group. The donor for controlled release of nitric monoxide exists in a fluid state such as liquid at room temperature and undergoes a sol-to-gel phase transition at a physiological pH as the temperature increases above the critical temperature. The critical temperature of the phase transition is in the range of 25 to 35°C, and the gel is a hydrogel without chemical cross-links.
Abstract:
A donor capable of controlled release of nitric monoxide and a prosthetic implant whose surface is coated with this donor are disclosed. The donor comprises a main chain of an organic polymer and a side chain that is covalently linked to the main chain and has a diazeniumdiolate functional group. The donor for controlled release of nitric monoxide exists in a fluid state such as liquid at room temperature and undergoes a sol-to-gel phase transition at a physiological pH as the temperature increases above the critical temperature. The critical temperature of the phase transition is in the range of 25 to 35°C, and the gel is a hydrogel without chemical cross-links.