Abstract:
An MPDU structure for use in a wireless communications protocol includes a basic header (310) including an extended header bit (312) and ending with a length field (313) and further includes an extended header group (330) that begins with a length extension field (331) and that further includes an extended header flag bit (332). The MPDU structure may also include a payload (320).
Abstract:
[0064] An approach to support self-configuring feature on femtocell access points (FAP) is disclosed. A FAP may scan the neighboring base-stations provisioned in the network environment to collect the base-station identifiers of the neighboring base-stations. The FAP may detect a self-organizing server, which in turn may cooperatively operate with an OAM&P server to provide configuration values to the FAP. The FAP may automatically perform self-configuration without any or minimal user intervention. Such an approach may avoid cumbersome tasks of manual configuration and deployment of FAPs or avoiding the truck-roll.
Abstract:
Embodiments of methods and apparatus for monitoring a backhaul channel associated with a femto access point (FAP) are disclosed. There is disclosed a method comprising: transmitting, by an FAP over a backhaul channel to a gateway associated with a first network, a plurality of requests, wherein individual requests of the plurality of requests are transmitted periodically and the backhaul channel comprises a second network that is different from the first network; and receiving, by the FAP from the gateway over the backhaul channel, one or more responses indicating an operational state of the backhaul channel, wherein the one or more responses are received in response to a corresponding one or more requests of the plurality of requests. Additional variants and embodiments are also disclosed.
Abstract:
Method and system of network management and protocol software architectures for mobile broadband wireless networks. One embodiment of the software architecture employs a proxy Simple Network Management Protocol (SNMP) agent at a base station in the network. The proxy SNMP agent communicates with an SNMP manager at a network management system (NMS) using SNMP messages to send Management Information Base (MIB) objects between the NMS and the base station. The proxy SNMP agent communicates with a mobile subscriber station (MSS) using media access control (MAC) messages. The protocol software architecture further includes a management plane service access point (SAP) and a control plane SAP deployed in the MSS. The architecture enables specific parameters corresponding to dynamic service flows and Quality of Service to be retrieved from and written to an MSS using proxy SNMP agents at the base stations.
Abstract:
In some embodiments, a base station includes a service flow management module having an admission control module and a data path function module in communication with the admission control module. The data path function module is adapted to generate a first dynamic service addition (DSA) request message for a first uplink service flow in an active state to provide voice over internet protocol (VoIP) signaling. the admission control module, in response to the admission control module determining that a second uplink service flow in an admitted state for a VoIP call can be supported, is adapted to generate an admit signal, with the first and the second uplink service flows being substantially in accordance with an Institute of Electrical and Electronic Engineers (IEEE) 802.16 standard. The data path function module, in response to the admit signal, is further adapted to generate a second DSA request message for the second uplink service flow, with the second DSA message containing an amount of a reserved bandwidth for the VoIP call.
Abstract:
Embodiments of a base station, a communication system and a method for determining current location information of a mobile station using uplink time-difference of arrival (U-TDOA) in a wireless access network are generally described herein. Other embodiments may be described and claimed. In some embodiments, a first timing adjustment is determined from receipt of the ranging frame from the mobile station within the granted uplink time-slot, and a second timing adjustment is received from the non-serving base station. The second timing adjustment may be determined by the non-serving base station based on receipt of a ranging frame from the mobile station.
Abstract:
Technology for adjusting a receiver timing of a wireless device in a Coordinated Multipoint (CoMP) system is disclosed. One method can include the wireless device receiving a plurality of node specific reference signals (RSs) from a plurality of cooperating nodes in a coordination set of the CoMP system. The coordination set includes at least two cooperating nodes. The wireless device can estimate a composite received RS timing from a plurality of received RS timings generated from the plurality of node specific RSs. The received RS timings represent timings from the at least two cooperating nodes. The wireless device can adjust the receiver timing based on the composite received RS timing. A node specific RS can include a channel-state information reference signal (CSI-RS).
Abstract:
Systems, devices, and configurations to implement trusted connections within wireless networks and associated devices and systems are generally disclosed herein. In some examples, a wireless local area network (WLAN) may be attached to a 3GPP evolved packet core (EPC) as a trusted access network, without use of an evolved packet data gateway (ePDG) and overhead from related tunneling and encryption. Information to create the trusted attachment between a mobile device and a WLAN may be exchanged using Access Network Query Protocol (ANQP) extensions defined by IEEE standard 802.11 u-2011, or using other protocols or standards such as DHCP or EAP. A trusted WLAN container with defined data structure fields may be transferred in the ANQP elements to exchange information used in the establishment and operation of the trusted attachment.
Abstract:
Embodiments of a system and method for reporting uplink control information (UCI) are generally described herein. In some embodiments, a first and second component carrier (CC) is provided for a user equipment (UE). The first and second CC are configured with transmission mode (TM) 10 and TMs 1-9, respectively. A first channel state information (CSI) report for the first CC with TM 10 and a second CSI report for the second CC with at least one of TMs 1-9 are scheduled for transmission in a subframe. A collision is detected between the first and second CSI reports. Priority is assigned to the first CSI report or the second CSI report based on a prioritization parameter. The prioritized CSI report is transmitted based the prioritization parameter.
Abstract:
Systems, devices, and configurations to implement ESM (energy saving management) techniques in wireless networks are generally disclosed herein. In some examples, a distributed or centralized multi-RAT (radio access technology) technique is provided to implement ESM on a LTE (Long Term Evolution) or UMTS (Universal Mobile Telecommunications System) primary cell network. The technique may factor the number of UEs unable to be offloaded to another RAT (such as a Wi-Fi network), and the service impact threshold of implementing ESM on the primary wireless network. In further examples, an ESM deployment may factor the idle mode state of UEs (user equipment) in determining whether to proceed with ESM activation at a particular time on a particular cell network.