Abstract:
Ein Internet der Dinge (IoT)-System und -verfahren mit IoT-Sensoren zum Messen von Daten und zum Weiterleiten der Daten an Gateway-Vorrichtungen, wobei die Gateway-Vorrichtungen die Daten empfangen und die Daten an eine Cloud-Infrastruktur liefern, und mit einem Koordinator, um den Gateway-Vorrichtungen Besitz an den IoT-Sensoren zuzuweisen.
Abstract:
Methods and mechanisms for exchanging map information in a wireless communication. In an embodiment, map information to represent at least a portion of a map is advertised by a first communication device communication independent of any request for the map information being received in a data session or a voice session. In another embodiment, a second communication device receives the wireless communication and generates a representation of the map based on the advertised map information.
Abstract:
Technologies for identifying rogue access points having an actual location different from a registered location include a computing device to receive a unique identifier of each access point of a plurality of access points within a communication range of the computing device from the corresponding access point. The computing device determines a registered physical location of each access point based on the unique identifier. Additionally, the computing device determines a reference distance between the computing device and each access point based on a transmitted signal received from each corresponding access point and a spatial distance between each access point and each other access point based on the registered locations of the access points. Based on the spatial distances and reference distances, the computing device identifies which of the access points are rogue access points.
Abstract:
Embodiments of techniques and systems for dead-zone-location detection in wireless systems are described. In embodiments, a wireless device may be configured to receive radio signals and provide indicators that convey signal strength of received radio signals. The received radio signals are considered degraded when signal strength of the received radio signals is below a threshold level. The wireless device may also be configured to determine which dead zone the wireless device is currently located, in response to a determination that receipt of radio signals is degraded. Other embodiments may be described and claimed.
Abstract:
A device stores an indication of a current floor of a multiple floor building on which a device is located. The device measures signal strengths of signals received at the device from transmitters having known locations on the floors of the building. The device selects one of the multiple floors as a candidate floor based in part on the measured signal strengths. The device increases a confidence level associated with the indication of the current floor if the candidate floor corresponds to the current floor, and decreases the confidence level if the candidate floor does not correspond to the current floor. The device replaces the indication of the current floor with the candidate floor if the confidence level is below a threshold.
Abstract:
Embodiments of the invention address how trilateration processes, used to obtain a location of a mobile computing device, are affected by physical placement and sub-optimal selection of peer devices (PDs). Embodiments of the invention describe processes for selecting nearest PDs over further PDs, as received signal strength indicator (RSSI) measurements are more reliable—i.e., said “nearest PDs” provide more accurate distance measurements while improving the probability of finding more intersection points. Embodiments of the invention selectively utilize abnormal location poll data when executing location determination processes. Embodiments of the invention further enhance trilateration processes by utilizing dampening values for calculated location poll data.