Abstract:
This application is directed to dynamic control for data capture. A device may comprise a capture logic module to receive at least one of biometric data from a biometric sensing module, context data from a context sensing module or content data from a content sensing module. The capture logic module may determine if a capture scenario exists based on at least one of the biometric data and context data. The determination may be weighted based on an operational mode. If a capture scenario is determined to exist, the capture logic module may then determine whether to capture data based on at least the content data. Captured data may be stored in a capture database in the device (e.g., along with enhanced metadata based on at least one of the biometric data, the context data or the content data). The device may also comprise a feedback database including feedback data.
Abstract:
Various systems and methods for a wearable input device are described herein. A textile-based wearable system for providing user input to a device comprises a first sensor integrated into the textile-based wearable system, the first sensor to produce a first distortion value representing a distortion of the first sensor. The system also includes an interface module to detect the first distortion value, the distortion value measured with respect to an initial position, and transmit the first distortion value to the device, the device having a user interface, the user interface to be modified, responsive to receiving the first distortion value.
Abstract:
Technologies for displaying graphical elements on a graphical user interface include a wearable computing device to generate a captured image. The wearable computing device analyzes the captured image to generate image location metric data for one or more prospective locations on the graphical user interface at which to place a graphical element. The image location metric data indicates one or more image characteristics of the corresponding prospective location. The wearable computing device determines appropriateness data for each prospective location based on the corresponding image location metric data. The appropriate data indicates a relative suitability of the corresponding location for display of the graphical element. The wearable computing device selects one of the prospective locations based on the appropriateness data and displays the graphical element on the graphical user interface at the selected prospective location.
Abstract:
Systems, devices and methods are described including receiving a source image having a foreground portion and a background portion, where the background portion includes image content of a three-dimensional (3D) environment. A camera pose of the source image may be determined by comparing features of the source image to image features of target images of the 3D environment and using the camera pose to segment the foreground portion from the background portion may generate a segmented source image. The resulting segmented source image and the associated camera pose may be stored in a networked database. The camera pose and segmented source image may be used to provide a simulation of the foreground portion in a virtual 3D environment.