Abstract:
PROBLEM TO BE SOLVED: To provide a multi-radio platform and method for mitigating effects of interference. SOLUTION: In some embodiments, a multi-radio platform includes co-located radios including a Bluetooth transceiver and a wireless network transceiver. The wireless network transceiver may apply a transmit-active noise-cancellation matrix to signals received by the wireless network transceiver when the Bluetooth transceiver is transmitting and may apply a transmit-inactive noise-cancellation matrix to signals received when the Bluetooth transceiver is not transmitting. The transmit-active noise-cancellation matrix may mitigate effects of emissions generated by the Bluetooth transceiver when the Bluetooth transceiver is transmitting. The transmit-inactive noise-cancellation matrix is to mitigate effects of platform noise generated by platform elements of the multi-radio platform. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
Embodiments of a multi-radio wireless communication device and methods for synchronizing wireless network and Bluetooth (BT) communications are generally described herein. Other embodiments may be described and claimed. In some embodiments, a BT radio module adjusts a master clock signal by a predetermined step size before each subsequent BT transmission in response to a frame sync pulse from a wireless network radio module to reduce a time difference between subsequent frame sync pulses and synchronization reference points of BT slots.
Abstract:
In a multi-radio wireless device, a first radio and a second radio share a plurality of antennas. A MAC coordination engine may coordinate the activities of the first and second radios to facilitate the allocation of antennas to the radios. In at least one embodiment, the second radio is given priority over the first radio in the allocation of antennas. When the first radio desires to communicate, a number of antennas that is available for use may be determined. It may then be determined whether the communication should be permitted to proceed given the number of available antennas.
Abstract:
Embodiments of a multi-radio wireless communication device and methods for synchronizing wireless network and Bluetooth (BT) communications are generally described herein. Other embodiments may be described and claimed. In some embodiments, a BT radio module adjusts a master clock signal by a predetermined step size before each subsequent BT transmission in response to a frame sync pulse from a wireless network radio module to reduce a time difference between subsequent frame sync pulses and synchronization reference points of BT slots.
Abstract:
Techniques for managing detection, dynamic allocation, and sharing of available spectrum via cognitive radio systems and dynamic spectrum sharing. In some cases, RF carriers (e.g., secondary carriers or secondary cells) are not permanently assigned to base stations, user terminals, or the network. A base station can request allocation of secondary carriers using a reservation request. The assigned secondary carriers can be released and made available for assignment to another base station or radio access network.
Abstract:
Embodiments may comprise logic such as hardware and/or code to adaptively control the transmission power for a wireless channel. In many embodiments, adaptively controlling the transmission power may reduce or, in some embodiments, minimize interference between the wireless display (WiDi) transmissions and other transmissions such as multimedia content streaming over another wireless channel to the notebook via a second generation (2G) channel, third generation (3G) channel, or a future long term evolution (LTE) channel.
Abstract:
A method for coexistence radio communication systems is presented. In one embodiment, the method includes receiving a realtime frame synchronization signal and receiving one or more frame parameters. The method further includes determining, based at least on the frame synchronization signal and the frame parameters, estimated frame timing information and scheduling transmission based on the estimated frame timing information to avoid collision of the transmission and reception.
Abstract:
Methods and systems to implement a physical device to differentiate amongst multiple virtual machines (VM) of a computer system. The device may include a wireless network interface controller. VM differentiation may be performed with respect to configuration controls and/or data traffic. VM differentiation may be performed based on VM-specific identifiers (VM IDs). VM IDs may be identified within host application programming interface (API) headers of incoming configuration controls and data packets, and/or may be looked-up based on VM-specific MAC addresses associated with data packets. VM IDs may be inserted in API headers of outgoing controls and/or data packets to permit a host computer system to forward the controls and/or packets to appropriate VMs. VM IDs may be used look-up VM-specific configuration parameters and connection information to reconfigure the physical device on a per VM basis. VM IDs may be used look-up VM-specific security information with which to process data packets.
Abstract:
Methods and systems to permit multiple virtual machines (VMs) to separately configure and access a physical resource, substantially outside of a virtual machine monitor (VMM) that hosts the VMs. Each of a plurality of virtual machines (VMs) may access and configure the physical device through corresponding instances of a device driver that exposes controllable functions of the physical device within the VMs. VM-specific configuration parameters and connection information may be maintained for each of the VMs, outside of a VMM, to reconfigure or virtualize the physical device for each of the VMs with the corresponding VM-specific configuration parameters and connection information. Physical device virtualization augmentation features may be implemented within a combination of a physical device controller and a host device driver that executes outside of the VM.