Abstract:
Examples include techniques for command based on die termination (ODT). In some examples, values are programmed to registers at a memory device to establish one or more internal resistance termination (RTT) settings of ODT at the memory device. Values are also programmed to registers at the memory device to establish one more settings for timing of ODT latency. Programmed values may be changed in order to adjust a signal integrity for the memory device during read or write operations.
Abstract:
A memory device executes internal operations to provide a programmable burst length. The memory device includes multiple banks that are independent and separately addressable. The memory device selects a number of banks to operate in burst sequence, where all selected banks operate on a command sent from an associated memory controller. In response to receiving the access command, the memory device generates multiple internal operations to cause all selected memory banks to execute the access command, without requiring multiple commands from the memory controller.
Abstract:
Techniques and mechanisms for exchanging information from a memory controller to a memory device via a command/address bus. In an embodiment, the memory device samples a first portion of a command during a first sample period and samples a second portion of the command during a second sample period, the first portion and second portion exchanged via the command/address bus. The first sample period and the second sample period are concurrent with, respectively, a first transition of a clock signal and a second transition of the clock signal. In another embodiment, a mode of the memory device determines a relationship between the first transition and the second transition.
Abstract:
An apparatus is described. The apparatus includes a logic chip upon which a stack of memory chips is to be placed. The stack of memory chips and the logic chip to be placed within a same package, wherein, multiple memory chips of the stack of memory chips are divided into fractions, and, multiple internal channels within the package that emanate from the logic chip are to be coupled to respective ones of the fractions. The logic chip has a multiplexer. The multiplexer is to multiplex a single input/output (I/O) channel of the package to the multiple internal channels.
Abstract:
Embodiments are generally directed to performance of additional refresh operations during self-refresh mode. An embodiment of a memory device includes one or more memory banks, a mode register set, the mode register set including a first set of mode register bits, and a control logic to provide control operations for the memory device, the operations including refresh operations for the one or more memory banks in a refresh credit mode. The control logic is to perform one or more extra refresh cycles in response to receipt of a self-refresh command, the self-refresh command to provide current refresh status information, and is to store information in the first set of mode register bits regarding a modified refresh status after the performance of the one or more extra refresh cycles.
Abstract:
Techniques and mechanisms for providing termination for a plurality of chips of a memory device. In an embodiment, a memory device is an integrated circuit (IC) package which includes a command and address bus and a plurality of memory chips each coupled thereto. Of the plurality of memory chips, only a first memory chip is operable to selectively provide termination to the command and address bus. Of the respective on-die termination control circuits of the plurality of memory chips, only the on-die termination control circuit of the first memory chip is coupled via any termination control signal line to any input/output (I/O) contact of the IC package. In another embodiment, the plurality of memory chips are configured in a series with one another, and wherein the first memory chip is located at an end of the series
Abstract:
Flexible command addressing for memory. An embodiment of a memory device includes a dynamic random-access memory (DRAM); and a system element coupled with the DRAM, the system element including a memory controller for control of the DRAM. The DRAM includes a memory bank, a bus, the bus including a plurality of pins for the receipt of commands, and a logic, wherein the logic provides for shared operation of the bus for a first type of command and a second type of command received on a first set of pins.
Abstract:
A register not connected to a data bus is read by transferring data across an address bus to a device connected to the data bus, from which the data is read by a device connected to the data bus. The register resides in a register device connected via the address bus to a memory device that is connected to both the address bus and the data bus. A host processor triggers the register device to transfer information over the address bus to a register on the memory device. The host processor then reads the information from the register of the memory device.
Abstract:
An error check and scrub (ECS) mode enables a memory device to perform error checking and correction (ECC) and count errors. An associated memory controller triggers the ECS mode with a trigger sent to the memory device. The memory device includes multiple addressable memory locations, which can be organized in segments such as wordlines. The memory locations store data and have associated ECC information. In the ECS mode, the memory device reads one or more memory locations and performs ECC for the one or more memory locations based on the ECC information. The memory device counts error information including a segment count indicating a number of segments having at least a threshold number of errors, and a maximum count indicating a maximum number of errors in any segment.
Abstract:
Techniques and mechanisms for exchanging information between a memory controller and a memory device. In an embodiment, a memory controller receives information indicating for a memory device a threshold number of pending consolidated activation commands to access that memory device. The threshold number indicated by the information is less than a theoretical maximum number of pending consolidated activation commands, the theoretical maximum number defined based on timing parameters of the memory device. In another embodiment, the memory controller limits communication of consolidated activation commands to the memory device based on the information indicating the threshold number.