Abstract:
A mechanism is described for facilitating adjustment of video encoding rates and adaption of views in computing environments according to one embodiment. An apparatus of embodiments, as described herein, includes logic to track data associated with movement of a computing device accessible to a user, and logic to evaluate the data and compare a latency with latency thresholds, where the data indicates the latency and the latency thresholds associated with a frame. The apparatus further includes logic to maintain a current video encoding rate, if the latency is lower than a first latency threshold and greater than a second latency threshold. The current video encoding rate is decreased if the latency is equal to or greater than the first latency threshold, where the current video encoding rate is increased if the latency is lower than the second latency threshold. The apparatus further includes logic to present the frame at the computing device including one or more of a wearable device and a mobile device.
Abstract:
A system and method for maintaining connectivity between a host system running an Always-On-Always-Connected (AOAC) application and an associated remote application server includes determining a timing interval Ti for sending keep-alive messages. The timing interval Ti may be determined by selecting a value for a timeout (Ti) to a value between a maximum timeout (T max ) and a minimum timeout (T min ), transmitting a keep-alive message, at an interval based on Ti, across a network connection between a client platform running an Always-On-Always-Connected (AOAC) application and a remote application server associated with the AOAC application, checking a status of the network connection, increasing the value for T min if the network connection is still active and decreasing the value for T max if the network connection has been dropped.
Abstract:
A computing system is described that includes an I/O unit interface that is deactivated while said computing system operates within a non main CPU/OS based operational state. The computing system also includes a controller that operates functional tasks while the computing system is within the non main CPU/OS based operational state. The computing system also includes an I/O unit that is coupled to both the I/O unit interface and the controller.
Abstract:
The present invention includes various embodiments of a method and apparatus for increasing the networking capacity of existing wireless networks by using robust header compression. In one embodiment, the invention is a method. The method includes initiating a link within a wireless computer network. The method further includes transmitting data through the link using robust headers. The method may also include negotiating parameters of the link. In an alternate embodiment, the invention is also a method. The method includes receiving a request for a link within a wireless computer network. The method also includes receiving data through the link using robust headers. The method may further include negotiating parameters of the link. In another alternate embodiment, the invention is also a method. The method includes initiating a link within a wireless computer network. The method also includes transmitting data through the link in packets, the packets having headers, the headers including only unpredictable parameters. The method may further include compressing the headers and/or the packets. The method may also further include negotiating parameters of the link.
Abstract:
A lid controller hub (LCH) comprising processing components located in the lid of a mobile computing device, such as a laptop, processes sensor data generated by input sensors (microphones, cameras, touchscreen) and provides for improved and enhanced experiences over existing devices. For example, the LCH provides hardened privacy and the synchronization of touch display activities with the display refresh rate, the latter providing for a smoother and more responsive touch experience over existing designs. The LCH comprises neural network accelerators and digital signal processors that enable waking a device upon detection of an authenticated user's voice or face. The LCH also allows for video- and audio-based contextual awareness and adaptive cooling. By enabling a reduced hinge wire count and a typical day's usage with a single battery charge, an LCH can also provide for an improved industrial design to a simpler hinge and smaller battery.
Abstract:
Technologies for providing information to a user while traveling include a mobile computing device to determine network condition information associated with a route segment. The route segment may be one of a number of route segments defining at least one route from a starting location to a destination. The mobile computing device may determine a route from the starting location to the destination based on the network condition information. The mobile computing device may upload the network condition information to a crowdsourcing server. A mobile computing device may predict a future location of the device based on device context, determine a safety level for the predicted location, and notify the user if the safety level is below a threshold safety level. The device context may include location, time of day, and other data. The safety level may be determined based on predefined crime data. Other embodiments are described and claimed.
Abstract:
Systems and methods that provide that provide the sharing of capabilities over a communicative link, such as a network, is disclosed. The capabilities may be shared seamlessly between electronic devices by using pre-existing device drivers.
Abstract:
A method and apparatus for a user to interface with a mobile computing device is disclosed. In one embodiment, a method, comprises providing information on a user interface connected to a mobile computing device having a primary display, wherein the mobile computing device can be operated in multiple power states, and the user interface does not include the primary display.
Abstract:
Methods and apparatus to improve user experience on computing devices are disclosed. An example computing device includes an image sensor. The example computing device further includes wireless communication circuitry. The example computing device also includes an operations controller to cause the wireless communication circuitry to switch between different operation modes based on an analysis of image data generated by the image sensor. Different ones of the operation modes to consume different amounts of power.
Abstract:
The present application discloses devices, systems and methods for establishing and utilizing a UV sensing network to harness the efficacy of distributed UV sensing to produce improved accuracy of UV exposure measurement using mobile devices. This may be accomplished by "crowd sourcing", i.e. having multiple devices work collaboratively to measure the UV exposure. The collaboration can be implemented in many potential ways, such as, using a server based architecture where devices connect to a specific "UV measurements server" to provide measurements and receive aggregate estimated exposure levels, and/or by using a peer-to-peer architecture, where devices in a specific region creates a local ad-hoc UV sensing network.