CONTACTS WITH INTERFACE FERMI LEVEL TUNING LAYERS

    公开(公告)号:US20230197825A1

    公开(公告)日:2023-06-22

    申请号:US17555247

    申请日:2021-12-17

    CPC classification number: H01L29/456 H01L29/7851

    Abstract: Transition metal dichalcogenide (TMD) monolayers are positioned between a contact metal and a semiconductor to pin the Fermi level at the metal-semiconductor interface. The pinned Fermi level can provide for a lower Schottky barrier height between the contact metal and semiconductor than if no TMD were present at the contact metal-semiconductor interface. The height of the Schottky barrier can be tuned through the selection of the transition metal dichalcogenide used for the monolayer. Transition metal dichalcogenides have the chemical formula MX2, where M is a transition metal and X=sulfur, selenium, or tellurium. The transition metal dichalcogenides used for metal contact-semiconductor interfaces can have M=titanium, platinum, molybdenum, tungsten, erbium, rhodium, or lanthanum. A lower Schottky barrier height can reduce contact resistance, which can improve transistor performance as the parasitic resistance of source/drain channels approach that of transistor channel as transistor geometries continued to scale.

    CONDUCTIVE FEATURES FORMED USING METAL ASSISTED ETCH

    公开(公告)号:US20230197568A1

    公开(公告)日:2023-06-22

    申请号:US17556520

    申请日:2021-12-20

    Abstract: An apparatus includes a first layer comprising silicon, and a conductive feature extending within the silicon of the first layer. The conductive feature includes (i) conductive material extending throughout the length of the conductive feature, (ii) a barrier layer between the conductive material and the silicon of the first layer, and (iii) a second layer including dielectric material between the barrier layer and the silicon of the first layer. In an example, one or more discontinuous monolayers of metal are between sections of the dielectric material and the silicon of the first layer. The conductive feature is formed in a recess extending within the silicon of the first layer. In an example, the recess is formed using a metal assisted etch process using the metal as a catalyst, and one or more discontinuous monolayers of the metal are remnants of the metal used in the metal assisted etch process.

    1S-1T ferroelectric memory
    8.
    发明授权

    公开(公告)号:US11640839B2

    公开(公告)日:2023-05-02

    申请号:US17570249

    申请日:2022-01-06

    Abstract: A 1S-1T ferroelectric memory cell is provided that include a transistor and a two-terminal selector device. The transistor exhibits a low conductive state and a high conductive state (channel resistance), depending on drive voltage. The two-terminal selector device exhibits one of an ON-state and an OFF-state depending upon whether the transistor is in its low conductive state or its high conductive state. The transistor may be, for instance, a ferroelectric gate vertical transistor. Modulation of a polarization state of ferroelectric material of the vertical transistor may be utilized to switch the state of the selector device. The memory cell may thus selectively be operated in one of an ON-state and an OFF-state depending upon whether the selector device is in its ON-state or OFF-state.

Patent Agency Ranking