Abstract:
Reconstructed picture quality for a video codec system may be improved by categorizing reconstructed pixels into different histogram bins with histogram segmentation and then applying different filters on different bins. Histogram segmentation may be performed by averagely dividing the histogram into M bins or adaptively dividing the histogram into N bins based on the histogram characteristics. Here M and N may be a predefined, fixed, non-negative integer value or an adaptively generated value at encoder side and may be sent to decoder through the coded bitstream.
Abstract:
Reconstructed picture quality for a video codec system may be improved by categorizing reconstructed pixels into different histogram bins with histogram segmentation and then applying different filters on different bins. Histogram segmentation may be performed by averagely dividing the histogram into M bins or adaptively dividing the histogram into N bins based on the histogram characteristics. Here M and N may be a predefined, fixed, non-negative integer value or an adaptively generated value at encoder side and may be sent to decoder through the coded bitstream.
Abstract:
A three-dimensional (3D) video codec encodes multiple views of a 3D video, each including texture and depth components. The encoders of the codec encode video blocks of their respective views based on a set of prediction parameters, such as quad-tree split flags, prediction modes, partition sizes, motion fields, inter directions, reference indices, luma intra modes, and chroma intra modes. The prediction parameters may be inherited across different views and different ones of the texture and depth components.
Abstract:
Video compression encoding includes intra and inter prediction to reduce spatial and temporal redundancies in video. Prediction results or residuals represent differences between original video pixel values and predicted pixel values. The prediction residuals may be transformed into coefficients, referred to as transform coefficients, in the frequency domain. The transform coefficients may be quantized and entropy encoded. The transform coefficients can be sub-sampled prior to quantization to reduce their number. For example, sub-sampling may reduce more high frequency components than low frequency components represented in the transform coefficients. Therefore, sub-sampling reduces the number of transform coefficients that need to be quantized, reduces quantization complexity, and correspondingly increases throughput in the encoding.
Abstract:
An embodiment of a semiconductor package apparatus may include technology to determine a residual error based on coding unit information, and determine a candidate coding unit and an associated rate distortion cost based on the residual error. An embodiment may additionally or alternatively include technology to partition a first coding unit into two or more smaller coding units based on a partition message, accelerate processing of at least one of the two or more smaller coding units, and estimate motion fora frame based at least partially on results of the accelerated processing. Other embodiments are disclosed and claimed.
Abstract:
Systems, devices and methods are described including performing scalable video coding using inter-layer residual prediction. Inter-layer residual prediction in an enhancement layer coding unit, prediction unit, or transform unit may use residual data obtained from a base layer or from a lower enhancement layer. The residual may be subjected to upsample filtering and/or refinement filtering. The upsample or refinement filter coefficients may be predetermined or may be adoptively determined.