Abstract:
Techniques for observed time difference of arrival (OTDOA) positioning based on heterogeneous reference signals (RSs) are discussed. One example apparatus configured to be employed within a user equipment (UE) comprises receiver circuitry, a processor, and transmitter circuitry. The receiver circuitry can receive, from each of a plurality of evolved Node Bs (eNBs), one or more RSs of each of a plurality of distinct types of RSs. The processor can determine, for each of the eNBs, a time of arrival (TOA) of the one or more RSs of each of the plurality of distinct types of RSs; and compute, for each of the eNBs, a reference signal time difference (RSTD) based at least in part on the TOAs of the one or more RSs of each of the plurality of distinct types of RSs. The transmitter circuitry can transmit the RSTD computed for each of the eNBs.
Abstract:
Flexible Transmission Time Interval (TTI) bundling sizes may be used to provide efficient use of the radio spectrum in LTE-TDD communications. Different uplink/downlink frame configurations may be associated with different TTI bundling sizes. In one implementation, each of the frames may include uplink data that is transmitted via TTI bundles of a particular length in which the total number of uplink subframes corresponding to each of the packets is equal to a multiple of the particular length of the TTI bundles. Semi-Persistent Scheduling (SPS) may be used to transmit control information relating to transmission of the frames.
Abstract:
Various embodiments may be generally directed to techniques for transmitting and receiving one or more reference signals opportunistically within a window over an unlicensed carrier. Various embodiments provide techniques for determining a configuration of the window within an operating environment that may include one or more different radio access technologies (RATs). Various embodiments provide techniques for transmitting the one or more reference signals opportunistically within the window based on an availability of a wireless communications medium. Various embodiments provide techniques for receiving and recovering the one or more reference signals regardless of their location within the window, thereby improving communications in an unlicensed spectrum shared by a variety of different communication devices that may operate according to a variety of different communication protocols.
Abstract:
Methods, systems, and storage media for providing and/or obtaining feedback for data transmissions in an unlicensed shared medium are described. In embodiments, an apparatus may include radio control circuitry to demodulate and decode a data transmission from an evolved node B (eNB). The apparatus may include and processing circuitry, coupled with the radio control circuitry, and the processing circuitry is to receive the data transmission from the radio control circuitry and generate feedback based on the data transmission. The radio control circuitry may also control radio-frequency circuitry to determine whether a physical channel in an unlicensed shared medium is unoccupied, and transmit the feedback to the eNB over the physical channel when the physical channel is unoccupied according to the determination. Other embodiments may be described and/or claimed.
Abstract:
Opportunistic networking systems can utilize one or multiple bands/channels that are shared with other radio access technologies (RATs) (such as wireless local area networks (WLAN, such as Wi-Fi) and mmWave). An unconventional carrier type (UCT) can be defined to support opportunistic networking in licensed and/or unlicensed spectrum. For example, a primary base station can determine a secondary base station activated for use with user equipment (UE). The primary base station can schedule data to be sent to the UE via the secondary base station. The secondary base station can provide discovery information, reserve a wireless channel, transmit the data and/or release the channel (implicitly, explicitly, or by reservation).
Abstract:
Technology for performing downlink scheduling is disclosed. One or more subframes can be identified within a defined frame of a primary cell to perform cross-subframe scheduling for a secondary cell. The primary cell can be configured to communicate with a user equipment (UE) using a licensed band and the secondary cell can be configured to communicate with the UE using an unlicensed band. The cross-subframe scheduling can be performed for one or more downlink subframes of the secondary cell using the one or more subframes of the primary cell.
Abstract:
A new carrier type (NCT) has been developed for LTE in order to reduce the overhead associated with cell-specific reference signals (CRS) and control signaling via the PDCCH. The NCT is an LTE carrier with minimized control channel overhead and cell-specific reference signals. Described herein are techniques where, upon receiving a PDSCH grant from a eNB using DCI format 1A to indicate a fallback transmission mode, a UE transmits a CQI to the eNB based upon CSI-RS resources contained in the NCT.
Abstract:
Techniques for improving observed time difference of arrival (OTDOA) positioning are discussed. One example apparatus employable in an eNB comprises a processor, transmitter circuitry, and receiver circuitry. The processor is configured to: generate a set of positioning reference signals (PRSs); and encode the set of PRSs for a multi-antenna transmission. The transmitter circuitry is configured to transmit the set of PRSs via the multi-antenna transmission. The receiver circuitry is configured to receive a set of reference signal time differences (RSTDs) from a user equipment (UE) in response to the set of PRSs. The processor is further configured to estimate a position of the UE based at least in part on the set of RSTDs.
Abstract:
User equipment (UE), an enhanced NodeB (eNB) and method of improving positioning accuracy and enabling vertical domain positioning of the UE are generally described. The UE may receive a prsInfo control signal having at least one PRS configuration and subsequently a plurality of Reference Signals (RSs). The RSs may have a first Positioning Reference Signal (PRS) pattern in a first set of PRS subframes and a second PRS pattern in a second set of PRS subframes received prior to a subsequent first set of PRS subframes. The RSs may have a vertical positioning RS and a lateral positioning RS. The UE may measure PRS resource elements (REs), each having a PRS, in the first and second PRS pattern. The UE may transmit a measurement of the PRS in the first and second PRS pattern. The patterns may enable horizontal and vertical positioning to be determined.
Abstract:
An enhanced NodeB (eNB), user equipment (UE) and method of communicating using Long Term Evolution (LTE) licensed and unlicensed bands are generally described herein. The eNB may transmit a trigger signal to the UE. The trigger signal may be transmitted in the LTE unlicensed or licensed band and inform the UE of transmission of a reference signal from the eNB to the UE in the unlicensed band. The trigger signal may correspond to a single reference signal transmission or multiple periodic or consecutive reference signal transmissions. The trigger signal or a separate trigger signal may be used to inform the UE of a data transmission. The trigger signal may be transmitted at any point prior to or in the same subframe as the reference signal and the reference signal may be transmitted before, after or in the same subframe as the data.