Abstract:
A user equipment (UE) can reserve shared spectrum between two wireless protocols upon the request from a tower. For example, an enhanced node B (eNB or eNodeB) transmits a message to associated UEs including a set of candidate UEs, a length of time to reserve, and a frequency band to use. UEs perform medium sensing on the specified spectrum if a UE finds its identifier in the set of candidate UEs. Candidate UEs transmit a clear to send (CTS) message with channel reservation information if the medium is idle. A result of the success or failure of the CTS transmission attempt is sent back to the eNB. Upon receiving the feedback information from the UEs, the eNB starts sending data to those UEs that sent the positive feedback on the channel reservation.
Abstract:
An apparatus of user equipment (UE), the apparatus comprises transceiver circuitry and processing circuitry. The transceiver circuitry is configured to transmit and receive radio frequency electrical signals to communicate with one or more separate devices via a cellular communication network as UE and to communicate with one or more separate devices via a wireless personal area network (PAN) as PAN header UE (hUE). The processing circuitry is configured to receive a packetized message directly from a second UE via the PAN, wherein the packetized message indicates an enhanced node B (eNB) of the cellular network as a destination for the packetized message; and initiate transmission of the packetized message to the eNB.
Abstract:
Disclosed in some examples are systems, machine-readable media, methods, and cellular wireless devices which implement a Listen Before Talk (LBT) access scheme for a device operating according to a cellular wireless protocol in an unlicensed channel. A cellular wireless device may utilize the cellular wireless protocol in the unlicensed channel after the LBT access scheme has determined that a channel (a defined range of frequencies) in the unlicensed channel is idle for a particular period of time.
Abstract:
User equipment (UE), an enhanced NodeB (eNB) and method of beamforming are generally described. The UE may perform beam scanning for coarse beam tracking to an eNB tracking reference signal in a downlink (DL) subframe during an eNB tracking interval and train a beamforming matrix of the UE, perform channel sounding based on the eNB tracking reference signal to obtain an optimal direction to communicate with the eNB and transmit, during a UE tracking interval in an uplink (UL) subframe, a UE tracking reference signal using the optimal direction. A backup beam on a different channel may be used when the eNB or UE tracking reference signal is missed. The UE may re-sync with the eNB based on determining that the eNB tracking reference signal is missed or upon receiving an instruction from an anchor eNB. If re-synchronization fails, the UE may transmit to the anchor eNB a blockage report.
Abstract:
Embodiments of the present disclosure describe methods and apparatuses for opportunistic access of millimeterwave (mmWave) radio access technology based on edge cloud mobile proxy. Other embodiments may be described or claimed.
Abstract:
Embodiments described herein relate generally to a communication between a user equipment ("UE") and an evolved Node Bs ("eNBs") in a plurality of frequency bands. An eNB may transmit cross-carrier, cross-subframe scheduling information to a UE in a licensed frequency band. In response reception of the scheduling information, the UE may sense a wireless transmission medium to determine if the medium is idle. If the medium is idle, the UE may generate and transmit a request to reserve the medium in the unlicensed frequency band (e.g., a Clear-to-Send message). The eNB may transmit downlink data to the UE in the unlicensed frequency band. Other embodiments may be described and/or claimed.
Abstract:
Briefly, in accordance with one or more embodiments, cooperation of multiple beams for transmission is provided by identifying at least two beams among multiple beams that are dominant for a user, determining if there is any beam collision between the at least two beams, and, if there is beam collision between the at least two beams, delaying scheduling on one or more weaker ones of the at least two beams for other users and combining the two or more beams for transmission to the user. Alternatively, cooperation of multiple beams for transmission is provided by, if there is beam collision between the at least two beams, muting one or more weaker ones of the at least two beams and transmitting to the user with a stronger one of the at least two beams.
Abstract:
This document discusses, among other things, a wireless personal-area network (PAN) underlying a cellular wide-area network (WAN). The PAN includes a wearable user equipment (UE-W) and a user equipment aggregation node (UE-AN). The UE-W includes processing circuitry to process data for communication with a network of the WAN through the UE-AN, and radio interface circuitry to communicate with the UE-AN through a first air interface. The UE-AN includes processing to process data for communication between the network of the WAN and the UE-W, and radio interface circuitry to communicate with the network of the WAN through the first air interface and with the UE-W through a second air interface. The UE-W and the UE-AN can share a network credential, appearing as a single device to the WAN.
Abstract:
Embodiments describe example radio access networks where uplink and downlink communications operate asymmetrically. In one embodiment, an inverse fast Fourier transform and an add cyclic prefix operation is performed on a downlink communications by a baseband unit. In an uplink communication using the same baseband unit, a corresponding fast Fourier transform and a remove cyclic prefix operation are performed at a remote radio unit. This generates different levels of traffic on a physical communication link between the baseband unit and the remote radio unit for uplink and downlink communications with similar characteristics.
Abstract:
Methods and apparatuses for communicating in a wireless network include a signal processor for combining a plurality of signals transmitted by respective eNBs by processing the signals as multipath instances of a single signal.