Abstract:
A method and system is disclosed for providing intelligent remote access to wireless transmit/receive units (WTRUs). A translator is provided in base stations so that system controllers may issue application level network management protocol messages to base stations. The messages are transmitted by the translator to a medium access control (MAC) messaging protocol and forwarded to WTRUs. Information provided by WTRUs to base stations is translated from a MAC protocol to an application level network management protocol so that the information may be accessed by system controllers using application level network management protocols.
Abstract:
A method and system for managing radio resources in a time-slotted wireless communication system is based on the quality of service (QoS) information of a user. A plurality of time slots of a radio resource are sorted into a plurality of different categories, such as high QoS time slots, high capacity time slots, and balanced time slots (305). Each category is associated with a different level of QoS. QoS information with respect to a user is obtained in response to a radio resource request received from the user (310). The user is associated with a particular category of time slots based on the QoS information of the user (315).
Abstract:
A method and apparatus for performing a handover are disclosed. An Internet protocol (IP) multimedia subsystem (IMS) client registers with an IMS network and establishes an MIH session with an MIH application server using an SIP. The IMS client establishes a session for IP-based service, (e.g., VoIP), with a communication peer using SIP messaging. MIH messages are exchanged for handover with the MIH application server over IP using SIP messages by encapsulating the MIH messages in SIP instant messages. Alternatively, the MIH messages may be exchanged with the MIH application over IP by sending equivalent SIP messages in place of the MIH messages.
Abstract:
Several methods are provided for communicating emergency call capability information between a station and an access point (AP) in a wireless local area network. The methods include advertising by the AP of its emergency call capabilities and announcing by the station of its emergency call capabilities. The AP can advertise its emergency call capabilities in a beacon frame, a probe response frame, a reassociation response frame, or a reauthentication response frame. The station can announce its emergency call capabilities in an association request frame, a reassociation request frame, an authentication request frame, or a reauthentication request frame.
Abstract:
A method for battery conservation in a wireless communication system begins with requesting a battery level measurement from a wireless transmit/receive unit (WTRU) (102) by a radio network controller (RNC) (104). The battery level is measured at the WTRU (102) and is reported to the RNC (104). The battery level measurement is stored in the RNC (104), where it can be accessed by radio resource management (RRM) (100) procedures. The battery level measurement is applied to the RRM (100) procedures by making adjustments to the procedures based on the battery level measurement, whereby the battery of the WTRU (102) is conserved.
Abstract:
A wireless local area network (WLAN) includes a station (706), an access point (AP 702), and a network management entity (NME 704). A method for remote radio resource management in the WLAN begins by configuring a trigger condition at the AP(702). A determination is made whether the trigger condition has been met, and a notification message is sent from the AP (702) to the NME (704) if the trigger condition has been met.
Abstract:
In a wireless communication system including an access point and at least one wireless transmit/receive unit (WTRU), a method for adaptive radio resource management begins by examining a frame error rate value of a WTRU. Then, a channel utilization value of the WTRU and a current data rate of the WTRU are examined. System parameters for the WTRU are adjusted based on the examined variables.
Abstract:
A method and wireless communication system for requesting and obtaining transmit power control (TPC) information. The system includes at least one access point (AP) (110) and at least one wireless transmit/receive unit (WTRU) (105). When the AP (110) decides to adapt the transmit power level of the WTRU (105), the AP (110) transmits a TPC request frame to the WTRU (105). In response to receiving the TPC request frame, the WTRU (105) performs one or more physical measurements and sends a TPC report frame back to the AP (110).
Abstract:
A method and wireless communication system for transferring management information. The system includes at least one access point (AP) including a first management entity and a second management entity, and at least one wireless transmit/receive unit (WTRU) including a third management entity and a fourth management entity. The AP transmits a management information base (MIB) information request action frame including a category field and an action details field to the WTRU. In response to receiving the information request action frame, the WTRU determines whether or not to provide management information to the AP. When the WTRU provides management information to the AP, the WTRU compiles management information stored in a MIB located in the WTRU and transmits a MIB information report action frame to the AP. The MIB lists a plurality of tables containing information associated with radio resource management (RRM) and at least one table containing physical layer measurements.
Abstract:
A method and apparatus for performing a handover are disclosed. An Internet protocol (IP) multimedia subsystem (IMS) client registers with an IMS network and establishes a media independent handover (MIH) session with an MIH application server using a session initiation protocol (SIP). The IMS client establishes a session for IP-based service, (e.g., voice over IP (VoIP)), with a communication peer using an SIP. MIH messages are exchanged for handover with the MIH application server over IP. After handover, the session is resumed. A serving call session control function (S-CSCF) triggers the MIH application server based on a string "MIH services" and a unique identifier included in an INVITE request. The IMS client may send a REFER request to the MIH application server after the handover to resume the session. Alternatively, the IMS client may send a RE-INVITE request to the MIH application server and the communication peer.