Abstract:
A method and apparatus for forwarding non-consecutive data blocks in enhanced uplink (EU) transmissions. A wireless transmit/receive unit (WTRU) and one or more Node-Bs include one or more automatic repeat request (ARQ)/hybrid-ARQ (H-ARQ) processes for supporting an enhanced dedicated channel (E-DCH). Data blocks transmitted by the WTRU are re-ordered in a re-ordering entity located in the Node-B(s) or a radio network controller (RNC). Once a missing data block is identified, a data forwarding timer in the Node-B(s) or RNC is initiated and subsequent WTRU transmissions are monitored to determine whether the missing data block has been discarded by the WTRU. Upon recognition of the discard of the missing data block, the non-consecutive data blocks are forwarded to higher layers.
Abstract:
A receiver sends hybrid automatic repeat request (H-ARQ) feedback for a current packet and at least one previous packet, whereby an error is detected based on the H-ARQ feedback. The receiver sends H-ARQ feedback with an identification of the packet or a sequence number of a packet that the receiver expects to receive next. The receiver stores a packet in a memory before combining the packet with a previously received packet, and decodes the stored packet after failing to decode a combined packet to avoid a corruption error. The receiver may set a timer when sending a NACK. If the receiver fails to receive a packet until expiration of the timer, the receiver initiates a process for recovering the packet. Each H-ARQ feedback may be associated with other attributes. Some H-ARQ processes may operate in an asynchronous mode while others in a synchronous mode in the same direction.
Abstract:
In a wireless communication system comprising at least one evolved Node-B (eNB) and a plurality of wireless transmit/receive units (WTRUs), a non-contention based (NCB) channel is established, maintained, and utilized. The NCB channel is allocated for use by one or more WTRUs in the system for utilization in a variety of functions, and the allocation is communicated to the WTRUs. The wireless communication system analyzes the allocation of the NCB channel as required, and the NCB channel is reallocated as required.
Abstract:
A method and apparatus for mapping an uplink control channel to a physical channel in a single carrier frequency division multiple access (SC-FDMA) system are disclosed. A wireless transmit/receive unit (WTRU) generates control bits to be carried by a control channel. The WTRU maps the control channel to a plurality of subcarriers among subcarriers in a resource block assigned to the WTRU and to at least one long block (LB) in a sub-frame. The control channel includes a data-non-associated control channel and/or a data-associated control channel. The subcarriers mapped to the data-non-associated control channel may be distributed over all, or a fraction of, at least one resource block. The data-non-associated control channel may be mapped to the subcarriers with one or more subcarriers as a basic unit. The mapped subcarriers may be consecutive in frequency domain. The control bits may be multiplexed with data bits within the LB.
Abstract:
A method for performing cell search in an orthogonal frequency division multiple access (OFDMA) based cellular communication network in which a primary synchronization channel (P-SCH), and optionally a secondary synchronization channel (S-SCH), carries cell search information. A downlink signal is received containing P-SCH symbols. The P-SCH symbols are processed to obtain an initial detection of frame timing, orthogonal frequency division multiplexing (OFDM) symbol timing, a cell identifier (ID), a frequency offset, and a cell transmission bandwidth. Optionally, an OFDM symbol timing self-check and error correction is then performed.
Abstract:
A method and apparatus for controlling enhanced dedicated channel (E-DCH) transmissions are disclosed. An enhanced uplink medium access control (MAC-e/es) entity processes a received scheduling grant to calculate a serving grant. The MAC-e/es entity determines whether both a hybrid automatic repeat request (H-ARQ) process for scheduled data and scheduled data are available. If an H-ARQ process for scheduled data and scheduled data are available, the MAC-e/es entity determines whether a serving grant exists. The MAC-e/es entity calculates a remaining power based on maximum allowed power and restricts an E-DCH transport format combination (E-TFC) based on the remaining power. The MAC-e/es entity selects an E-TFC using the serving grant and generates a MAC-e protocol data unit. The MAC-e/es entity may process the received scheduled grant is at each transmission time interval or may store the received scheduled grant in a grant list until there is E-DCH data to transmit.
Abstract:
A method and apparatus for selecting a serving cell/Node-B in a single carrier frequency division multiple access (SC-FDMA) system are disclosed. For intra-Node-B serving cell selection, a serving Node-B measures channel quality indicators (CQIs) of each subcarrier block in an uplink of each cell controlled by the serving Node-B and selects a new serving cell based on the CQIs. The serving Node-B reports the selected new serving cell to a wireless transmit/receive unit (WTRU). For inter-Node-B serving cell selection, each of a plurality of Node-Bs measures a CQI of each of a plurality of subcarrier blocks in an uplink transmission in each cell controlled by each Node-B and forwards the CQIs to a serving cell selection entity. The serving cell selection entity selects a new serving cell/Node-B based on the CQIs. The serving cell selection entity may be a centralized access gateway, a current serving Node-B or a WTRU.
Abstract:
A wireless communication system, which supports enhanced dedicated channel (E-DCH) data transmissions, includes a wireless transmit/receive unit (WTRU) (102), at least one Node-B (104) and a radio network controller (RNC) (106). The WTRU includes a buffer (126), a data lifespan timer (124), a data retransmission counter (130), a hybrid-automatic repeat request (H-ARQ) process (128) and a controller (122). The timer establishes a lifespan for at least one data block stored in the buffer. If physical resources have not been allocated for a data block associated with a lifespan timer that is close to expiration, the WTRU sends an urgent channel allocation request. If physical resources have been allocated, the data block is prioritized for transmission with respect to other data blocks. The data block is discarded if the lifespan timer expires or if the WTRU receives feedback information indicating that the data block was successfully received by the Node-B.
Abstract:
A method for initial downlink transmit power adjustment for non-real time services in a wireless communications network begins by estimating an initial downlink transmit power level for non-real-time services. The estimated power level is then compared with a threshold. A determination is made whether an increase in the estimated power level would affect neighboring cells. If an increase would not affect neighboring cells, then the initial downlink transmit power level is adjusted by a predetermined amount.
Abstract:
A wireless communication method and system for controlling an enhanced uplink (EU) radio access bearer (RAB). The wireless communication system includes at least one wireless transmit/receive unit (WTRU), at least one Node-B and a radio network controller (RNC). The RNC configures an EU RAB to operate on an enhanced dedicated channel (E-DCH). At least one of the WTRU and the Node-B report EU traffic statistics and EU performance statistics to the RNC. The RNC then adjusts the configuration of the EU RAB in accordance with the received EU traffic statistics, the EU performance statistics, and information collected by the RNC itself.